Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 39, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461298

ABSTRACT

BACKGROUND: The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS: An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS: This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.

2.
Bioresour Technol ; 389: 129806, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769978

ABSTRACT

Cellobiohydrolases are crucial for cellulose breakdown, but their efficiency on crystalline cellulose is hampered by limited access to single chain ends to initiate hydrolysis. As a result, they depend on enzymes like lytic polysaccharide monooxygenases (LPMOs), which directly target the crystalline cellulose surface. This study investigated how LPMO pretreatment affected the productive binding capacity of a Trichoderma longibrachiatum cellobiohydrolase, TlCBHI, on crystalline cellulose by applying an amperometric cellobiose dehydrogenase biosensor. After the 24-hour of LPMO pretreatment, the productive binding capacity of TlCBHI significantly increased in all reactions. However, with a shorter 5-hour LPMO pretreatment, minimal to no effect on productive binding capacity was observed. Of note, all LPMO reactions were inactivated around this time point. This delayed LPMO effect suggests that the improved binding capacity for cellulases does not directly result from cellulose chain cleavage by LPMOs but rather from the cellulose decrystallization following the oxidative cleavage.

3.
Nat Commun ; 14(1): 1063, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828821

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of H2O2 that fuels LPMO catalysis. Light-driven H2O2 formation is accompanied by oxidation of ring-conjugated olefins in the lignin, while LPMO-catalyzed oxidation of phenolic hydroxyls leads to the required priming reduction of the enzyme. The discovery that light-driven abiotic reactions in Nature can fuel H2O2-dependent redox enzymes involved in deconstructing lignocellulose may offer opportunities for bioprocessing and provides an enzymatic explanation for the known effect of visible light on biomass conversion.


Subject(s)
Cellulose , Mixed Function Oxygenases , Cellulose/metabolism , Mixed Function Oxygenases/metabolism , Lignin/metabolism , Hydrogen Peroxide/metabolism , Polysaccharides/metabolism , Oxidation-Reduction , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...