Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 5: 346, 2018.
Article in English | MEDLINE | ID: mdl-30619858

ABSTRACT

Heparin is a widely-used intravenous anticoagulant comprising a complex mixture of highly-sulfated linear polysaccharides of repeating sequences of uronic acids (either iduronic or glucuronic) 1->4 linked to D-glucosamine with specific sulfation patterns. Preparation of crude heparin from mammalian mucosa involves protease digestion with alcalase under basic conditions (pH ≥ 9) and high temperature (>50°C) and also oxidation. Under such conditions, side reactions including the ubiquitous 2-O desulfation occur on the heparin backbone yielding non-endogenous disaccharides within polysaccharide chains. Whatever the process used for its manufacture, some level of corresponding degradation impurities is therefore expected to be found in heparin and the derived Low Molecular Weight Heparins. These impurities should be monitored to control the quality of the final therapeutic product. Two anion exchange chromatography techniques were used to analyze heparin samples exhaustively or partially depolymerized with heparinases and determine the proportions of non-endogenous disaccharides generated by side reactions during the manufacturing process (epoxides and galacturonic moieties). We also present data from a case study of marketed heparin. Current heparin sodium monographs do not directly address process impurities related to modification of the structure of heparin. Although desulfation reduces the overall biological potency, we found that heparin with an average of one modified disaccharide per chain can still comply with the USP or Ph. Eur. heparin sodium monographs requirements. We have implemented disaccharide analysis to monitor the quality of this product on a risk basis.

2.
J Pharm Biomed Anal ; 81-82: 138-45, 2013.
Article in English | MEDLINE | ID: mdl-23644908

ABSTRACT

Enoxaparin is a widely used subcutaneously administered antithrombotic agent comprising a complex mixture of glycosaminoglycan chains. Owing to this complexity, its antithrombotic potency cannot be defined by physicochemical methods and is therefore evaluated using an enzymatic assay of anti-Xa and anti-IIa activity. Maintaining consistent anti-Xa activity in the final medicinal product allows physicians to ensure administration of the appropriate dosage to their patients. Bioassays are usually complex and display poorer reproducibility than physicochemical tests such as HPLC assays. Here, we describe the implementation of a common robotic platform and standard release potency testing procedures for enoxaparin sodium injection (Lovenox, Sanofi, Paris, France) products at seven quality control sites within Sanofi. Qualification and analytical procedures, as well as data handling, were optimized and harmonized to improve assay reproducibility. An inter-laboratory study was performed in routine-release conditions. The coefficients of variation for repeatability and reproducibility in assessments of anti-Xa activity were 1.0% and 1.2%, respectively. The tolerance interval in reproducibility precision conditions, expressed as percentage potency, was 96.8-103.2% of the drug product target of 10,000 IU/ml, comparing favorably with the United States of America Pharmacopeia specification (90-110%). The maximum difference between assays in two different laboratories is expected to be 4.1%. The reproducibility characteristics of anti-IIa activity assessments were found to be similar. These results demonstrate the effectiveness of the standardization process established and allow for further improvements to quality control in Lovenox manufacture. This process guarantees closeness between actual and target potencies, as exemplified by the results of release assays obtained during a three-year period.


Subject(s)
Anticoagulants/pharmacology , Enoxaparin/pharmacology , Factor Xa Inhibitors , Prothrombin/antagonists & inhibitors , Anticoagulants/standards , Biological Assay/methods , Biological Assay/standards , Clinical Laboratory Techniques , Drug Industry/methods , Drug Industry/standards , Enoxaparin/standards , Humans , Laboratories/standards , Pharmaceutical Solutions , Quality Control , Reproducibility of Results , Robotics
3.
Anal Bioanal Chem ; 399(2): 747-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20931175

ABSTRACT

Heparin is a widely used intravenous anticoagulant comprised of a very complex mixture of glucosaminoglycan chains, mainly derived from porcine intestinal mucosa. Recent contamination of heparin with oversulfated (OS) chondroitin sulfate resulted in a significant number of deaths, triggering a rapid revision of product monographs and the introduction of new analytical methods to limit as far as possible the chances of another occurrence of such a phenomenon. The distribution of heparin-processing units across the globe prevents their complete fool-proof auditing. Therefore, the implementation of additional orthogonal analytical techniques for quality control (QC) of heparin batches is highly important. We perform routine quantitative polymerase chain reaction (Q-PCR) release tests to confirm the quality of all crude heparin batches received by sanofi-aventis. The routine test used provides information on the animal species of origin as requested by the US Pharmacopoeia (USP) and European Pharmacopoiea monographs. Here, we demonstrate that the Q-PCR test is inhibited by OS glycosaminoglycans at concentrations as low as 0.5% (w/w versus heparin) and can be used as an additional safeguard to monitor levels of potentially harmful contaminants without any increased workload. In response to a request from the USP, we also describe the development of a Q-PCR method for monitoring nucleotidic impurities in pure heparin, which is able to detect amplifiable DNA at concentrations lower than 0.1 ng DNA per milligram of heparin. This increased sensitivity makes this modified Q-PCR method a potential candidate for inclusion as a QC requirement in future monographs.


Subject(s)
Anticoagulants/chemistry , Drug Contamination , Heparin/chemistry , Polymerase Chain Reaction/methods , Animals , Chondroitin Sulfates/analysis , DNA/analysis , Dermatan Sulfate/analysis , Glycosaminoglycans/analysis , Nucleotides/analysis , Quality Control , Swine
4.
Clin Appl Thromb Hemost ; 15(1): 50-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18805847

ABSTRACT

Low-molecular-weight heparins (LMWHs) are widely used in the management of thrombosis and acute coronary syndromes. They are obtained by the enzymatic or chemical depolymerization of porcine intestinal heparin. Enoxaparin sodium, a widely used LMWH, has a unique and reproducible oligosaccharide profile which is determined by the origin of the starting material and a tightly controlled manufacturing process. Although other enoxaparin-like LMWHs do exist, specific release criteria including the origin of the crude heparin utilized for their production, have not been established. A quantitative polymerase chain reaction method has been developed to ensure the purity of the porcine origin of crude heparin, with a DNA detection limit as low as 1 ppm for bovine, or 10 ppm for ovine contaminants. This method is routinely used as the release acceptance criterion during enoxaparin sodium manufacturing. Furthermore, when the process removes DNA, other analytical techniques can be used to assess any contamination. Disaccharide profiling after exhaustive depolymerization can determine the presence of at least 10% bovine or 20% ovine material; multivariate analysis is useful to perform the data analysis. Consistent with the availability of newer technology, these methods should be required as acceptance criteria for crude heparins used in the manufacture of LMWHs to ensure their safety, quality, and immunologic profile.


Subject(s)
Heparin, Low-Molecular-Weight/isolation & purification , Polymerase Chain Reaction/methods , Animals , Chromatography, High Pressure Liquid , DNA/isolation & purification , Disaccharides/isolation & purification , Heparin, Low-Molecular-Weight/chemistry , Swine
5.
Phys Rev Lett ; 96(11): 113002, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16605818

ABSTRACT

We present an experimental and theoretical study of the fluorescence rate of a single molecule as a function of its distance to a laser-irradiated gold nanoparticle. The local field enhancement leads to an increased excitation rate whereas nonradiative energy transfer to the particle leads to a decrease of the quantum yield (quenching). Because of these competing effects, previous experiments showed either fluorescence enhancement or fluorescence quenching. By varying the distance between molecule and particle we show the first experimental measurement demonstrating the continuous transition from fluorescence enhancement to fluorescence quenching. This transition cannot be explained by treating the particle as a polarizable sphere in the dipole approximation.

6.
Nano Lett ; 6(4): 744-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16608276

ABSTRACT

We report on chemically specific, subsurface imaging with high spatial resolution. Using tip-enhanced Raman spectroscopy, we probe carbon nanotubes buried beneath a host dielectric media. We demonstrate our ability to map and resolve specific vibrational modes with 30 nm spatial resolution for dielectric layers with different thicknesses.


Subject(s)
Materials Testing/methods , Nanotechnology/methods , Nanotubes, Carbon/analysis , Nanotubes, Carbon/ultrastructure , Spectrum Analysis, Raman/methods , Materials Testing/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Sensitivity and Specificity , Spectrum Analysis, Raman/instrumentation , Surface Properties , Transducers
7.
Chemphyschem ; 6(4): 577-82, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15881568

ABSTRACT

This Minireview discusses novel insights into the electronic structure of carbon nanotubes obtained using single-molecule fluorescence spectroscopy. Fluorescence spectra from single nanotubes are well described by a single, Lorentzian lineshape. Nanotubes with identical structures fluoresce with different energies due to local electronic perturbations. Carbon nanotube fluorescence unexpectedly does not-show any intensity or spectral fluctuations at 300 K The lack of intensity blinking or bleaching demonstrates that carbon nanotubes have the potential to provide a stable, single-molecule infrared photon source, allowing for the exciting possibility of applications in quantum optics and biophotonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...