Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(45): 42329-42339, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024674

ABSTRACT

Understanding the inhibitory factors affecting the adsorption of CO2 on low-rank coal from shallow-depth coal seams is essential to identify potential coal seams for CO2 sequestration. The CO2 adsorption capacity of shallow-depth coals was measured at a low pressure on raw and dry coals. The samples were also prepared for organic analyses, scanning electron microscopy analyses, and low-temperature nitrogen adsorption analyses to evaluate the CO2 adsorption and identify the inhibitory factors. An investigation was conducted to determine how CO2 adsorption occurs on coal by fitting experimental data to adsorption isotherm models, followed by analyzing the results based on the statistical analysis. In addition, this study used Henry's law, surface potential, and Gibbs free energy to identify the adsorption inhibitor between CO2 and coal. The CO2 adsorption experiment was conducted on raw coal with a moisture content of 15.18-20.11% and dry coal with no moisture. The experimental data showed that the CO2 adsorption capacity in dry coal was 1.6-1.8 times greater than that in raw coal. A fitting graph between the adsorption data and the isotherm model indicated that CO2 adsorption on coal occurred on monolayers and multilayers under raw and dry conditions. Statistical evaluation of the adsorption isotherm models showed that the Langmuir and Freundlich models aligned more closely to the experimental data. According to this result, low-pressure adsorption of CO2 on coal occurred in monolayers and multilayers under raw and dry conditions. Coal containing a high huminite content had a higher potential for CO2 adsorption, and the drying increased the positive relationship. On the other hand, coal containing high inertinite content inhibited CO2 adsorption onto the coal, but the drying process did not adversely affect CO2 adsorption. Furthermore, coal with high moisture and inertinite content inhibited the affinity, accommodation, and spontaneous CO2 adsorption onto the coal. CO2 adsorption could lead to swelling, but moisture loss opened more sites and micropores, resulting in the swelling effect not closing all micropores in dry coal. Based on these results, coal seams with low moisture and inertinite content are the most promising for CO2 adsorption. Altogether, this study provides an understanding of the percentage of inhibitor factors that affects CO2 adsorption on low-rank coal from shallow depths, which may lead to different CO2 adsorption capacities.

2.
J Sustain Metall ; 9(2): 613-624, 2023.
Article in English | MEDLINE | ID: mdl-37288451

ABSTRACT

Indonesia is one of the countries in the world that has been utilizing geothermal as a renewable energy source to generate electricity. Depending on the geological setting, geothermal brine possesses critical elements worthwhile to extract. One of the critical elements is lithium which is interesting in being processed as raw material for the battery industries. This study thoroughly presented titanium oxide material for lithium recovery from artificial geothermal brine and the effect of Li/Ti mole ratio, temperature, and solution pH. The precursors were synthesized using TiO2 and Li2CO3 with several variations of the Li/Ti mole ratio mixed at room temperature for 10 min. The mixture of 20 g of raw materials was put into a 50 mL crucible and then calcined in a muffle furnace. The calcination temperature in the furnace was varied to 600, 750, and 900 °C for 4 h with a heating rate. of 7.55 °C/min. After the synthesis process, the precursor is reacted with acid (delithiation). Delithiation aims to release lithium ions from the host Li2TiO3 (LTO) precursor and replace it with hydrogen ions through an ion exchange mechanism. The adsorption process lasted for 90 min, and the stirring speed was 350 rpm on a magnetic stirrer with temperature variations of 30, 40, and 60 °C and pH values of 4, 8, and 12. This study has shown that synthetic precursors synthesized based on titanium oxide can absorb lithium from brine sources. The maximum recovery obtained at pH 12 and a temperature of 30 °C was 72%, with the maximum adsorption capacity obtained was 3.55 mg Li/gr adsorbent. Shrinking Core Model (SCM) kinetics model provided the most fitted model to represent the kinetics model (R2 = 0.9968), with the constants kf, Ds, and k, are 2.2360 × 10-9 cm/s; 1.2211 × 10-13 cm2/s; and 1.0467 × 10-8 cm/s.

3.
Membranes (Basel) ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676893

ABSTRACT

There is a shift from internal combustion engines to electric vehicles (EVs), with the primary goal of reducing CO2 emissions from road transport. Battery technology is at the heart of this transition as it is vital to hybrid and fully electric vehicles' performance, affordability, and reliability. However, it is not abundant in nature. Lithium has many uses, one of which is heat transfer applications; synthesized as an alloying agent for batteries, glass, and ceramics, it therefore has a high demand on the global market. Lithium can be attained by extraction from other natural resources in igneous rocks, in the waters of mineral springs, and geothermal brine. During the research, geothermal brine was used because, from the technological point of view, geothermal brine contains higher lithium content than other resources such as seawater. The nanofiltration separation process was operated using various solutions of pH 5, 7, and 10 at high pressures. The varying pressures are 11, 13, and 15 bar. The nanofiltration method was used as the separation process. High pressure of inert nitrogen gas was used to supply the driving force to separate lithium from other ions and elements in the sample. The research results supported the selected parameters where higher pressure and pH provided more significant lithium recovery but were limited by concentration polarization. The optimal operating conditions for lithium recovery in this research were obtained at a pH of 10 under a pressure of 15 bar, with the highest lithium recovery reaching more than 75%.

4.
Gels ; 8(4)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35448134

ABSTRACT

The study of geopolymers has become an interesting concern for many scientists, especially in the infrastructure sector, due to having inherently environmentally friendly properties and fewer energy requirements in production processes. Geopolymer attracts many scientists to develop practical synthesis methods, useful in industrial-scale applications as supplementary material for concrete. This study investigates the geopolymerization of fly ash and geothermal silica-based dry activator. The dry activator was synthesized between NaOH and silica geothermal sludge through the calcination process. Then, the geopolymer mortar was produced by mixing the fly ash and dry activator with a 4:1 (wt./wt.) ratio. After mixing homogeneously and forming a paste, the casted paste moved on to the drying process, with temperature variations of 30, 60, and 90 °C and curing times of 1, 3, 5, 7, 14, 21, 28 days. The compressive strength test was carried out at each curing time to determine the geopolymer's strength evolution and simulate the reaction's kinetics. In addition, ATR-FTIR spectroscopy was also used to observe aluminosilicate bonds' formation. The higher the temperature, the higher the compressive strength value, reaching 22.7 MPa at 90 °C. A Third-order model was found to have the highest R2 value of 0.92, with the collision frequency and activation energy values of 1.1171 day-1 and 3.8336 kJ/mol, respectively. The utilization of coal fly ash and silica geothermal sludge as a dry activator is, indeed, an approach to realize the circular economy in electrical power generations.

SELECTION OF CITATIONS
SEARCH DETAIL
...