Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959771

ABSTRACT

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Subject(s)
Organoselenium Compounds , Selenium , Trace Elements , Antioxidants/chemistry , Selenium/pharmacology , Oxidative Stress , Glutathione Peroxidase/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Thioredoxin-Disulfide Reductase/metabolism
2.
Chemistry ; 29(59): e202301934, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37544915

ABSTRACT

Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.

3.
Curr Top Med Chem ; 23(11): 1004-1041, 2023.
Article in English | MEDLINE | ID: mdl-37246323

ABSTRACT

Neglected tropical diseases (NTDs) affect mainly poor and marginalized populations of tropical and subtropical areas in 150 countries. Many of the chemical processes involved in the synthesis of active pharmaceutical ingredients (APIs) are highly polluting and inefficient, both in terms of materials and energy-consuming. In this review, we present the green protocols developed in the last 10 years to access new small molecules with potential applications in the treatment of leishmania, tuberculosis, malaria, and Chagas disease. The use of alternative and efficient energy sources, like microwaves and ultrasound, as well as reactions using green solvents and solvent-free protocols, are discussed in this review.


Subject(s)
Chagas Disease , Malaria , Humans , Neglected Diseases/drug therapy , Chagas Disease/drug therapy , Malaria/drug therapy
4.
Org Biomol Chem ; 18(27): 5210-5217, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32602500

ABSTRACT

Arylseleninic acids were used as an electrophilic selenium source in aromatic substitution reactions, using N,N-substituted anilines and indoles as nucleophiles at 70 °C for 6-15 h. A total of fourteen 4-selanylanilines and five 3-selanylindoles were selectively obtained in good to excellent yields. The starting benzeneseleninic acids are easily prepared from the respective diselenides, are bench stable and easy to handle, affording water as the only waste at the end of the reaction.

5.
Carbohydr Polym ; 219: 240-250, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31151522

ABSTRACT

In this study, Schiff bases of chitosan (CS) were synthesized using citronellal, citral, and their derivatives containing selenium and sulfur. Organoselenium and organosulfur compounds show attractive biological and pharmaceutical activities, which can be beneficial to CS-based materials. From the characterization analyses, it was found that the CS-derivatives containing organoselenium and organosulfur compounds exhibited the highest conversion degrees (23 and 28%). Biological assays were conducted using films prepared by the blending of CS-derivatives and poly(vinyl alcohol). The antimicrobial evaluation indicated that the film prepared with the sulfur-containing CS was the most active against the tested pathogens (Escherichia coli, Staphylococcus aureus, and Candida albicans) since it reduced considerably their counts (42.5%, 17.4%, and 18.7%). Finally, in vivo assays revealed that this film attenuates atopic dermatitis-like symptoms in mice by suppressing the increase of myeloperoxidase (MPO) activity and reactive species (RS) levels induced by 2,4-dinitrochlorobenzene (DNCB). In summary, CS-derivatives containing chalcogens, mainly organosulfur, are potential candidates for biomedical applications such as for the treatment of chronic skin diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Chitosan , Dermatitis, Atopic/drug therapy , Organoselenium Compounds/pharmacology , Schiff Bases/pharmacology , Animals , Candida albicans/drug effects , Chalcogens/pharmacology , Chitosan/analogs & derivatives , Chitosan/pharmacology , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene/chemistry , Disease Models, Animal , Escherichia coli/drug effects , Mice , Mice, Inbred BALB C , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...