Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(11): 1903-1913, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37798433

ABSTRACT

Evolutionary radiations generate most of Earth's biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), 'small-bodied faunivore' has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny ('metatree') comprising 1,888 synapsid species from the Carboniferous through the Eocene (305-34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations. Faunivory is the ancestral dietary regime of each major synapsid radiation, but relatively small body size is only established as the common ancestral state of radiations near the origin of Mammaliaformes in the Late Triassic. The faunivorous ancestors of synapsid radiations typically have numerous novel characters compared with their contemporaries, and these derived traits may have helped them to survive faunal turnover events and subsequently radiate.


Subject(s)
Biological Evolution , Fossils , Animals , Phylogeny , Mammals/anatomy & histology , Diet
2.
Sci Adv ; 9(9): eade8929, 2023 03.
Article in English | MEDLINE | ID: mdl-36857459

ABSTRACT

Clarifying how microevolutionary processes scale to macroevolutionary patterns is a fundamental goal in evolutionary biology, but these analyses, requiring comparative datasets of population-level variation, are limited. By analyzing a previously published dataset of 2859 ruminant crania, we find that variation within and between ruminant species is biased by a highly conserved mammalian-wide allometric pattern, CREA (craniofacial evolutionary allometry), where larger species have proportionally longer faces. Species with higher morphological integration and species more biased toward CREA have diverged farther from their ancestors, and Ruminantia as a clade diversified farther than expected in the direction of CREA. Our analyses indicate that CREA acts as an evolutionary "line of least resistance" and facilitates morphological diversification due to its alignment with the browser-grazer continuum. Together, our results demonstrate that constraints at the population level can produce highly directional patterns of phenotypic evolution at the macroevolutionary scale. Further research is needed to explore how CREA has been exploited in other mammalian clades.


Subject(s)
Head , Skull , Humans , Animals , Ruminants , Family
4.
Anat Rec (Hoboken) ; 306(6): 1214-1227, 2023 06.
Article in English | MEDLINE | ID: mdl-36458500

ABSTRACT

Use of quantitative morphological methods in biology has increased with the availability of 3D digital data. Rotated orientation patch count (OPCr) leverages such data to quantify the complexity of an animal's feeding surface, and has previously been used to analyze how tooth complexity signals diet in squamates, crocodilians, and mammals. These studies show a strong correlation between dental complexity and diet. However, dietary prediction using this technique has not been tested on the feeding structures of edentulous (toothless) taxa. This study is the first to test the applicability of OPCr to the triturating surface morphology of a beaked clade. Fifty-five turtle specimens, 42 of which preserved both the skull and rhamphotheca, were categorized into dietary categories based on the food sources comprising 90% or 60% of their diets. Photogrammetric models of each specimen were read into molaR, producing OPCr results. Comparison of bone and rhamphotheca OPCr values shows no significant difference in complexity, implying that bone can suffice for predicting diet from morphology when keratin is absent. Carnivorous taxa have significantly lower OPCr values than herbivorous or omnivorous taxa, showing that feeding surface complexity in edentulous animals varies with diet similarly to tooth complexity in toothed taxa. Comparison of bone OPCr values by family shows that Testudinidae (tortoises) are more complex than Cheloniidae (sea turtles) and Chelydridae (snapping turtles), but that Cheloniidae and Chelydridae are not significantly different from each other. We therefore find that OPCr can be used to differentiate between carnivores and other dietary categories in edentulous taxa.


Subject(s)
Tooth Wear , Tooth , Turtles , Animals , Tooth/anatomy & histology , Molar/anatomy & histology , Diet , Reptiles , Mammals
5.
Commun Biol ; 5(1): 1280, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443424

ABSTRACT

Patterns of growth throughout the lifetime of an animal reflect critical life history traits such as reproductive timing, physiology, and ecological interactions. The ancestral growth pattern for tetrapods has traditionally been described as slow-to-moderately paced, akin to modern amphibians, with fast growth and high metabolic rates considered a specialized physiological trait of amniotes. Here, we present bone histology from an ontogenetic series of the Early Carboniferous stem tetrapod Whatcheeria deltae, and document evidence of fibrolamellar bone-primary bone tissue associated with fast growth. Our data indicate that Whatcheeria juveniles grew rapidly and reached skeletal maturity quickly, allowing them to occupy a large-bodied predator niche in their paleoenvironment. This life history strategy contrasts with those described for other stem tetrapods and indicates that a diversity of growth patterns existed at the origins of tetrapod diversification. Importantly, Whatcheeria marks an unexpectedly early occurrence of fibrolamellar bone in Tetrapoda, both temporally and phylogenetically. These findings reveal that elevated juvenile growth is not limited to amniotes, but has a deep history in the tetrapod clade and may have played a previously unrecognized role in the tetrapod invasion of land.


Subject(s)
Fossils , Life History Traits , Animals , Bone and Bones , Cell Proliferation , Cell Cycle
6.
Nature ; 607(7920): 726-731, 2022 07.
Article in English | MEDLINE | ID: mdl-35859179

ABSTRACT

Endothermy underpins the ecological dominance of mammals and birds in diverse environmental settings1,2. However, it is unclear when this crucial feature emerged during mammalian evolutionary history, as most of the fossil evidence is ambiguous3-17. Here we show that this key evolutionary transition can be investigated using the morphology of the endolymph-filled semicircular ducts of the inner ear, which monitor head rotations and are essential for motor coordination, navigation and spatial awareness18-22. Increased body temperatures during the ectotherm-endotherm transition of mammal ancestors would decrease endolymph viscosity, negatively affecting semicircular duct biomechanics23,24, while simultaneously increasing behavioural activity25,26 probably required improved performance27. Morphological changes to the membranous ducts and enclosing bony canals would have been necessary to maintain optimal functionality during this transition. To track these morphofunctional changes in 56 extinct synapsid species, we developed the thermo-motility index, a proxy based on bony canal morphology. The results suggest that endothermy evolved abruptly during the Late Triassic period in Mammaliamorpha, correlated with a sharp increase in body temperature (5-9 °C) and an expansion of aerobic and anaerobic capacities. Contrary to previous suggestions3-14, all stem mammaliamorphs were most probably ectotherms. Endothermy, as a crucial physiological characteristic, joins other distinctive mammalian features that arose during this period of climatic instability28.


Subject(s)
Biological Evolution , Ear, Inner , Mammals , Thermogenesis , Animals , Biomechanical Phenomena , Body Temperature , Ear, Inner/anatomy & histology , Ear, Inner/physiology , Extinction, Biological , Fossils , History, Ancient , Mammals/anatomy & histology , Mammals/physiology , Semicircular Ducts/anatomy & histology , Semicircular Ducts/physiology
7.
Integr Org Biol ; 4(1): obac006, 2022.
Article in English | MEDLINE | ID: mdl-35291671

ABSTRACT

The regionalization of the mammalian spinal column is an important evolutionary, developmental, and functional hallmark of the clade. Vertebral column regions are usually defined using transitions in external bone morphology, such as the presence of transverse foraminae or rib facets, or measurements of vertebral shape. Yet the internal structure of vertebrae, specifically the trabecular (spongy) bone, plays an important role in vertebral function, and is subject to the same variety of selective, functional, and developmental influences as external bone morphology. Here, we investigated regionalization of external and trabecular bone morphology in the vertebral column of a group of shrews (family Soricidae). The primary goals of this study were to: (1) determine if vertebral trabecular bone morphology is regionalized in large shrews, and if so, in what configuration relative to external morphology; (2) assess correlations between trabecular bone regionalization and functional or developmental influences; and (3) determine if external and trabecular bone regionalization patterns provide clues about the function of the highly modified spinal column of the hero shrew Scutisorex. Trabecular bone is regionalized along the soricid vertebral column, but the configuration of trabecular bone regions does not match that of the external vertebral morphology, and is less consistent across individuals and species. The cervical region has the most distinct and consistent trabecular bone morphology, with dense trabeculae indicative of the ability to withstand forces in a variety of directions. Scutisorex exhibits an additional external morphology region compared to unmodified shrews, but this region does not correspond to a change in trabecular architecture. Although trabecular bone architecture is regionalized along the soricid vertebral column, and this regionalization is potentially related to bone functional adaptation, there are likely aspects of vertebral functional regionalization that are not detectable using trabecular bone morphology. For example, the external morphology of the Scutisorex lumbar spine shows signs of an extra functional region that is not apparent in trabecular bone analyses. It is possible that body size and locomotor mode affect the degree to which function is manifest in trabecular bone, and broader study across mammalian size and ecology is warranted to understand the relationship between trabecular bone morphology and other measures of vertebral function such as intervertebral range of motion.

8.
Anat Rec (Hoboken) ; 305(7): 1611-1628, 2022 07.
Article in English | MEDLINE | ID: mdl-34677912

ABSTRACT

Captive specimens in museum collections facilitate study of rare taxa, but the lifestyles, diets, and lifespans of captive animals differ from their wild counterparts. Trabecular bone architecture adapts to in vivo forces, and may reflect interspecific variation in ecology and behavior as well as intraspecific variation between captive and wild specimens. We compared trunk vertebrae bone microstructure in captive and wild xenarthran mammals to test the effects of ecology and captivity. We collected µCT scans of the last six presacral vertebrae in 13 fossorial, terrestrial, and suspensorial xenarthran species (body mass: 120 g to 35 kg). For each vertebra, we measured centrum length; bone volume fraction (BV.TV); trabecular number and mean thickness (Tb.Th); global compactness (GC); cross-sectional area; mean intercept length; star length distribution; and connectivity and connectivity density. Wild specimens have more robust trabeculae, but this varies with species, ecology, and pathology. Wild specimens of fossorial taxa (Dasypus) have more robust trabeculae than captives, but there is no clear difference in bone microstructure between wild and captive specimens of suspensorial taxa (Bradypus, Choloepus), suggesting that locomotor ecology influences the degree to which captivity affects bone microstructure. Captive Tamandua and Myrmecophaga have higher BV.TV, Tb.Th, and GC than their wild counterparts due to captivity-caused bone pathologies. Our results add to the understanding of variation in mammalian bone microstructure, suggest caution when including captive specimens in bone microstructure research, and indicate the need to better replicate the habitats, diets, and behavior of animals in captivity.


Subject(s)
Bone and Bones , Spine , Animals , Bone Density , Mammals , Spine/diagnostic imaging
9.
PLoS One ; 16(11): e0259369, 2021.
Article in English | MEDLINE | ID: mdl-34739492

ABSTRACT

Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth's history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sampled here indicate that maximum or asymptotic size was reached, suggesting that the maximum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown.


Subject(s)
Body Size/physiology , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Animals , China , Extinction, Biological , Paleontology/methods , Skull/anatomy & histology
10.
R Soc Open Sci ; 8(9): 202145, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34540239

ABSTRACT

Cranial morphology is remarkably varied in living amniotes and the diversity of shapes is thought to correspond with feeding ecology, a relationship repeatedly demonstrated at smaller phylogenetic scales, but one that remains untested across amniote phylogeny. Using a combination of morphometric methods, we investigate the links between phylogenetic relationships, diet and skull shape in an expansive dataset of extant toothed amniotes: mammals, lepidosaurs and crocodylians. We find that both phylogeny and dietary ecology have statistically significant effects on cranial shape. The three major clades largely partition morphospace with limited overlap. Dietary generalists often occupy clade-specific central regions of morphospace. Some parallel changes in cranial shape occur in clades with distinct evolutionary histories but similar diets. However, members of a given clade often present distinct cranial shape solutions for a given diet, and the vast majority of species retain the unique aspects of their ancestral skull plan, underscoring the limits of morphological convergence due to ecology in amniotes. These data demonstrate that certain cranial shapes may provide functional advantages suited to particular dietary ecologies, but accounting for both phylogenetic history and ecology can provide a more nuanced approach to inferring the ecology and functional morphology of cryptic or extinct amniotes.

11.
Sci Rep ; 11(1): 16875, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413357

ABSTRACT

Several amniote lineages independently evolved multiple rows of marginal teeth in response to the challenge of processing high fiber plant matter. Multiple tooth rows develop via alterations to tooth replacement in captorhinid reptiles and ornithischian dinosaurs, but the specific changes that produce this morphology differ, reflecting differences in their modes of tooth attachment. To further understand the mechanisms by which multiple tooth rows can develop, we examined this feature in Endothiodon bathystoma, a member of the only synapsid clade (Anomodontia) to evolve a multi-rowed marginal dentition. We histologically sampled Endothiodon mandibles with and without multiple tooth rows as well as single-rowed maxillae. We also segmented functional and replacement teeth in µ-CT scanned mandibles and maxillae of Endothiodon and several other anomodonts with 'postcanine' teeth to characterize tooth replacement in the clade. All anomodonts in our sample displayed a space around the tooth roots for a soft tissue attachment between tooth and jaw in life. Trails of alveolar bone indicate varying degrees of labial migration of teeth through ontogeny, often altering the spatial relationships of functional and replacement teeth in the upper and lower jaws. We present a model of multiple tooth row development in E. bathystoma in which labial migration of functional teeth was extensive enough to prevent resorption and replacement by newer generations of teeth. This model represents another mechanism by which multiple tooth rows evolved in amniotes. The multiple tooth rows of E. bathystoma may have provided more extensive contact between the teeth and a triturating surface on the palatine during chewing.


Subject(s)
Biological Evolution , Dentition , Dinosaurs/anatomy & histology , Tooth/diagnostic imaging , Tooth/growth & development , X-Ray Microtomography , Animals , Phylogeny , Tooth Erosion/pathology
12.
Integr Comp Biol ; 61(5): 1892-1904, 2021 11 17.
Article in English | MEDLINE | ID: mdl-33905523

ABSTRACT

Articulating structures, such as the vertebrate skeleton or the segmented arthropod exoskeleton, comprise a majority of the morphological diversity across the eukaryotic tree of life. Quantifying the form of articulating structures is therefore imperative for a fuller understanding of the factors influencing biological form. A wealth of freely available 3D data capturing this morphological diversity is stored in online repositories such as Morphosource, but the geometric morphometric analysis of an articulating structure is impeded by arbitrary differences in the resting positions of its individual articulating elements. In complex articulating structures, where the angles between articulating elements cannot be standardized, landmarks on articulating elements must be Procrustes superimposed independently (locally) and then recombined to quantify variation in the entire articulating structure simultaneously. Here, we discuss recent advances in local superimposition techniques, namely the "matched local superimpositions" approach, which incorporates anatomically accurate relative sizes, positions, and orientations of locally-superimposed landmarks, enabling clearer biological interpretation. We also use simulations to evaluate the consequences of choice of superimposition approach. Our results show that local superimpositions will isolate shape variation within locally-superimposed landmark subsets by sacrificing size and positional variation. They may also create morphometric "modules" when there are none by increasing integration within the locally-superimposed subsets; however, this effect is no greater than the spurious between-module integration created when superimposing landmark subsets (i.e., articulating elements) together. Taken together, our results show that local superimposition techniques differ from conventional Procrustes superimpositions in predictable ways. Finally, we use empirical datasets of the skulls of wrasses and colubriform snakes to highlight the promise of local superimpositions and their utility. Complex articulating structures must be studied, and the only current solution to do so is local superimpositions.


Subject(s)
Skull , Animals
13.
Proc Biol Sci ; 288(1949): 20210494, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33878918

ABSTRACT

Mammals are the only living members of the larger clade Synapsida, which has a fossil record spanning 320 Ma. Despite the fact that much of the ecological diversity of mammals has been considered in the light of limb morphology, the ecological comparability of mammals to their fossil forerunners has not been critically assessed. Because of the wide use of limb morphology in testing ecomorphological hypothesis about extinct tetrapods, we sought: (i) to estimate when in synapsid history, modern mammals become analogues for predicting fossil ecologies; (ii) to document examples of ecomorphological convergence; and (iii) to compare the functional solutions of distinct synapsid radiations. We quantitatively compared the forelimb shapes of the multiple fossil synapsid radiations to a broad sample of extant Mammalia representing a variety of divergent locomotor ecologies. Our results indicate that each synapsid radiation explored different areas of morphospace and arrived at functional solutions that reflected their distinctive ancestral morphologies. This work counters the narrative of non-mammalian synapsid forelimb evolution as a linear progression towards more mammalian morphologies. Instead, a disparate array of early-evolving shapes subsequently contracted towards more mammal-like forms.


Subject(s)
Biological Evolution , Mammals , Animals , Forelimb , Fossils , Mammals/genetics , Phylogeny
14.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33875588

ABSTRACT

Earth's largest biotic crisis occurred during the Permo-Triassic Transition (PTT). On land, this event witnessed a turnover from synapsid- to archosauromorph-dominated assemblages and a restructuring of terrestrial ecosystems. However, understanding extinction patterns has been limited by a lack of high-precision fossil occurrence data to resolve events on submillion-year timescales. We analyzed a unique database of 588 fossil tetrapod specimens from South Africa's Karoo Basin, spanning ∼4 My, and 13 stratigraphic bin intervals averaging 300,000 y each. Using sample-standardized methods, we characterized faunal assemblage dynamics during the PTT. High regional extinction rates occurred through a protracted interval of ∼1 Ma, initially co-occurring with low origination rates. This resulted in declining diversity up to the acme of extinction near the Daptocephalus-Lystrosaurus declivis Assemblage Zone boundary. Regional origination rates increased abruptly above this boundary, co-occurring with high extinction rates to drive rapid turnover and an assemblage of short-lived species symptomatic of ecosystem instability. The "disaster taxon" Lystrosaurus shows a long-term trend of increasing abundance initiated in the latest Permian. Lystrosaurus comprised 54% of all specimens by the onset of mass extinction and 70% in the extinction aftermath. This early Lystrosaurus abundance suggests its expansion was facilitated by environmental changes rather than by ecological opportunity following the extinctions of other species as commonly assumed for disaster taxa. Our findings conservatively place the Karoo extinction interval closer in time, but not coeval with, the more rapid marine event and reveal key differences between the PTT extinctions on land and in the oceans.


Subject(s)
Extinction, Biological , Fossils , Animals , Biodiversity , Ecosystem , South Africa
15.
Curr Biol ; 31(9): 1883-1892.e7, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33657406

ABSTRACT

The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.


Subject(s)
Biological Evolution , Mammals , Animals , Fossils , Reptiles/anatomy & histology , Spine/anatomy & histology
16.
PeerJ ; 8: e9925, 2020.
Article in English | MEDLINE | ID: mdl-33083110

ABSTRACT

Taphonomic deformation, the distortion of fossils as a result of geological processes, poses problems for the use of geometric morphometrics in addressing paleobiological questions. Signal from biological variation, such as ontogenetic trends and sexual dimorphism, may be lost if variation from deformation is too high. Here, we investigate the effects of taphonomic deformation on geometric morphometric analyses of the abundant, well known Permian therapsid Diictodon feliceps. Distorted Diictodon crania can be categorized into seven typical styles of deformation: lateral compression, dorsoventral compression, anteroposterior compression, "saddle-shape" deformation (localized collapse at cranial mid-length), anterodorsal shear, anteroventral shear, and right/left shear. In simulated morphometric datasets incorporating known "biological" signals and subjected to uniform shear, deformation was typically the main source of variance but accurate "biological" information could be recovered in most cases. However, in empirical datasets, not only was deformation the dominant source of variance, but little structure associated with allometry and sexual dimorphism was apparent, suggesting that the more varied deformation styles suffered by actual fossils overprint biological variation. In a principal component analysis of all anomodont therapsids, deformed Diictodon specimens exhibit significant dispersion around the "true" position of this taxon in morphospace based on undistorted specimens. The overall variance associated with deformation for Anomodontia as a whole is minor, and the major axes of variation in the study sample show a strong phylogenetic signal instead. Although extremely problematic for studying variation in fossil taxa at lower taxonomic levels, the cumulative effects of deformation in this study are shown to be random, and inclusion of deformed specimens in higher-level analyses of morphological disparity are warranted. Mean morphologies of distorted specimens are found to approximate the morphology of undistorted specimens, so we recommend use of species-level means in higher-level analyses when possible.

17.
Proc Biol Sci ; 287(1926): 20200457, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32345168

ABSTRACT

Biological structures with extreme morphologies are puzzling because they often lack obvious functions and stymie comparisons to homologous or analogous features with more typical shapes. An example of such an extreme morphotype is the uniquely modified vertebral column of the hero shrew Scutisorex, which features numerous accessory intervertebral articulations and massively expanded transverse processes. The function of these vertebral structures is unknown, and it is difficult to meaningfully compare them to vertebrae from animals with known behavioural patterns and spinal adaptations. Here, we use trabecular bone architecture of vertebral centra and quantitative external vertebral morphology to elucidate the forces that may act on the spine of Scutisorex and that of another large shrew with unmodified vertebrae (Crocidura goliath). X-ray micro-computed tomography (µCT) scans of thoracolumbar columns show that Scutisorex thori is structurally intermediate between C. goliath and S. somereni internally and externally, and both Scutisorex species exhibit trabecular bone characteristics indicative of higher in vivo axial compressive loads than C. goliath. Under compressive load, Scutisorex vertebral morphology is adapted to largely restrict bending to the sagittal plane (flexion). Although these findings do not solve the mystery of how Scutisorex uses its byzantine spine in vivo, our work suggests potentially fruitful new avenues of investigation for learning more about the function of this perplexing structure.


Subject(s)
Shrews/anatomy & histology , Animals , Bone and Bones , Lumbar Vertebrae
18.
Nat Ecol Evol ; 4(3): 487, 2020 03.
Article in English | MEDLINE | ID: mdl-32080370

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Ecol Evol ; 4(3): 470-478, 2020 03.
Article in English | MEDLINE | ID: mdl-32015524

ABSTRACT

The evolution of semi-independent modules is hypothesized to underlie the functional diversification of serially repeating (metameric) structures. The mammal vertebral column is a classic example of a metameric structure that is both modular, with well-defined morphological regions, and functionally differentiated. How the evolution of regions is related to their functional differentiation in the forerunners of mammals remains unclear. Here we gathered morphometric and biomechanical data on the presacral vertebrae of two extant species that bracket the synapsid-mammal transition and use the relationship between form and function to predict functional differentiation in extinct non-mammalian synapsids. The origin of vertebral functional diversity does not correlate with the evolution of new regions but appears late in synapsid evolution. This decoupling of regions from functional diversity implies that an adaptive trigger is needed to exploit existing modularity. We propose that the release of axial respiratory constraints, combined with selection for novel mammalian behaviours in Late Triassic cynodonts, drove the functional divergence of pre-existing morphological regions.


Subject(s)
Biological Evolution , Mammals , Adaptation, Physiological , Animals , Phylogeny , Prednisolone
20.
Nat Commun ; 10(1): 5071, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699978

ABSTRACT

A fundamental concept in evolutionary biology is that life tends to become more complex through geologic time, but empirical examples of this phenomenon are controversial. One debate is whether increasing complexity is the result of random variations, or if there are evolutionary processes which actively drive its acquisition, and if these processes act uniformly across clades. The mammalian vertebral column provides an opportunity to test these hypotheses because it is composed of serially-repeating vertebrae for which complexity can be readily measured. Here we test seven competing hypotheses for the evolution of vertebral complexity by incorporating fossil data from the mammal stem lineage into evolutionary models. Based on these data, we reject Brownian motion (a random walk) and uniform increasing trends in favor of stepwise shifts for explaining increasing complexity. We hypothesize that increased aerobic capacity in non-mammalian cynodonts may have provided impetus for increasing vertebral complexity in mammals.


Subject(s)
Biological Evolution , Mammals/anatomy & histology , Mammals/physiology , Spine/anatomy & histology , Spine/physiology , Animals , Fossils , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...