Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682736

ABSTRACT

The α-, ß- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, ß- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, ß- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, ß- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.


Subject(s)
Synucleinopathies , alpha-Synuclein , Animals , Mammals/metabolism , Protein Isoforms/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628418

ABSTRACT

Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/- and knock out BDNF-/-) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.


Subject(s)
Proteome , Zebrafish , Animals , Behavior Rating Scale , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Mammals/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics , Temperature , Zebrafish/metabolism
3.
Environ Pollut ; 287: 117151, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34020261

ABSTRACT

Fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) is counted as an organic manganese (Mn)-derived compound. The toxic effects of Mn (alone and complexed) on dopaminergic (DA) neurotransmission have been investigated in both cellular and animal models. However, the impact of environmentally relevant Mn exposure on DA neurodevelopment is rather poorly understood. In the present study, the MMT dose of 100 µM (about 5 mg Mn/L) caused up-regulation of DA-related genes in association with cell body swelling and increase in the number of DA neurons of the ventral diencephalon subpopulation DC2. Furthermore, our analysis identified significant brain Mn bioaccumulation and enhancement of total dopamine levels in association with locomotor hyperactivity. Although DA levels were restored at adulthood, we observed a deficit in the acquisition and consolidation of memory. Collectively, these findings suggest that developmental exposure to low-level MMT-derived Mn is responsible for the selective alteration of diencephalic DA neurons and with long-lasting effects on fish explorative behaviour in adulthood.


Subject(s)
Manganese , Organometallic Compounds , Animals , Diencephalon , Dopaminergic Neurons , Manganese/toxicity , Zebrafish
4.
Int J Mol Sci ; 20(3)2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30678131

ABSTRACT

The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.


Subject(s)
Fishes/physiology , Neurosecretory Systems/physiology , Nitric Oxide/metabolism , Osmoregulation , Osmotic Pressure , Animals , Biomarkers , Gene Expression Regulation , Hypothalamo-Hypophyseal System/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism
5.
Front Neurosci ; 11: 3, 2017.
Article in English | MEDLINE | ID: mdl-28154522

ABSTRACT

Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the ß sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression "prion-like diseases" refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid ß, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.

SELECTION OF CITATIONS
SEARCH DETAIL
...