Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Foodborne Pathog Dis ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38466980

ABSTRACT

Salmonella enterica serovar Typhimurium and its variants are the most common serotypes of human salmonellosis cases. Serotyping Salmonella Typhimurium and its variants has always been challenging. Our previous work found that among 14 Salmonella Typhimurium and variant strains, some different antigenic formulas had 100% pulsed-field gel electrophoresis (PFGE) similarity. The 14 strains were sorted into 3 groups; in each group, the different antigenic formulas had the same PFGE patterns. This phenomenon suggested that different antigenic formula identification might originate from a common ancestor subtyped by PFGE. To assess whether the serotyping method on Salmonella Typhimurium and variant strains reflected the genetic relationship, we improved the discrimination for the phylogenetic relationship among the 14 Salmonella Typhimurium and variant strains using Fourier-transform infrared spectroscopy (FTIR) and whole-genome multilocus sequence typing (wgMLST). We compared the wgMLST assay of 14 Salmonella Typhimurium and variant strains from this study with 50 public ST34 strain data of Salmonella Typhimurium and variant strains. We also compared flagella (H antigen)-related genes based on the whole genome of 14 strains and the other 293 ST34 public database for further understanding of this question. The phylogenetic results (PFGE) showed no regularity between the antigenic formulas and genotypes. The results of the higher discrimination power assays (FTIR and whole-genome multilocus sequence typing) also showed no regularity between the antigenic formulas and genotypes (or phenotypes). The 58 flagella encoding genes of different antigenic formulas were sorted into 13 patterns. However, a similar phenomenon was found: the same flagella encoding gene patterns could express different antigenic formulas. In conclusion, there is no consistency between the antigenic formulas and phylogenetic relationships among ST34 Salmonella Typhimurium and variant strains, even in flagella antigenic formula and flagella encoding genes.

2.
J Antimicrob Chemother ; 78(6): 1395-1405, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37039022

ABSTRACT

OBJECTIVES: In veterinary medicine, colistin has been widely used as therapeutic and prophylactic agent, and for growth promotion. However, colistin has been re-introduced into treatment of human MDR bacterial infections. We assessed the characteristics and spread of plasmid-borne colistin resistance among healthy pigs, workers with animal-contact and their household members in Thailand. METHODS: WGS and MIC data of 146 mcr-positive isolates from a cross-sectional One Health study were analysed. Long-read sequencing and conjugation were performed for selected isolates. RESULTS: mcr-carrying isolates were detected in 38% of pooled-pig samples and 16% of human faecal samples. Of 143 Escherichia coli and three Escherichia fergusonii, mcr-1, mcr-3, and mcr-9 variants were identified in 96 (65.8%), 61 (41.8%) and one (0.7%) isolate, respectively. Twelve E. coli co-harboured two mcr variants (mcr-1 and mcr-3). Clonal transmission was detected in five out of 164 farms. mcr-1 was mostly harboured by epidemic IncX4 and IncHI1 plasmids (89.9%). Conversely, mcr-3 was harboured by a range of different plasmids. Comparative plasmid studies suggested IncP and IncFII plasmids as possible endemic mcr-3 plasmids in Asian countries. Moreover, mcr-3 was associated with different mobile genetic elements including TnAs2, ISKpn40 and IS26/15DI. Detected genetic signatures (DRs) indicated recent mcr-3 transpositions, underlining the mobilizable nature of the mcr-3 cassette. CONCLUSIONS: The epidemiology of mcr and the possible evolution of successful plasmids and transposition modules should be carefully monitored. Of special concern is the growing number of different horizontal gene transferring pathways encompassing various transposable modules the mcr genes can be shared between bacteria.


Subject(s)
Colistin , Escherichia coli Proteins , Humans , Animals , Swine , Colistin/pharmacology , Enterobacteriaceae , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Farms , Thailand/epidemiology , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Plasmids/genetics
3.
Microbiology (Reading) ; 168(6)2022 06.
Article in English | MEDLINE | ID: mdl-35766988

ABSTRACT

Whole-genome sequencing (WGS) was conducted to characterize mcr-carrying extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (n=7). These E. coli isolates originated from two pigs (TH2 and TH3) and two humans (TH8 and TH9) from Thailand, and three pigs from Lao PDR (LA1, LA2 and LA3). Four E. coli sequence types/serotypes - ST6833/H20 (TH2 and TH3), ST48/O160:H40 (TH8 and TH9), ST5708/H45 (LA1) and ST10562/O148:H30 (LA2 and LA3) - were identified. The plasmid replicon type IncF was identified in all isolates. The point mutations Ser31Thr in PmrA and His2Arg in PmrB were found concurrently in all isolates (colistin MIC=4-8 µg ml-1). LA1 contained up to five point mutations in PmrB, and the colistin MIC was not significantly different from that for the other isolates. All mcr-1.1 was located in the ISApl1-mcr-1-pap2 element, while all mcr-3.1 was located in the TnAs2-mcr-3.1-dgkA-ISKpn40 element. The mcr-3.1 and blaCTX-M-55 genes were co-localized on the same plasmid, which concurrently contained cml, qnrS1 and tmrB. The blaCTX-M-55 and mcr-3.1 genes were located on conjugative plasmids and could be transferred horizontally under selective pressure from ampicillin or colistin. In conclusion, comprehensive insights into the genomic information of ESBL-producing E. coli harbouring mcr were obtained. As mcr-carrying ESBL-producing E. coli were detected in pigs and humans, a holistic and multisectoral One Health approach is required to contain antimicrobial resistance (AMR).


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Genomics , Humans , Microbial Sensitivity Tests , Plasmids/genetics , Swine , beta-Lactamases/genetics
4.
Poult Sci ; 101(1): 101538, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34788713

ABSTRACT

One hundred and twenty chicken samples from feces (n = 80), the carcass surface at slaughter at 2 meat chicken farms (n = 20), and retail chicken meat from 5 markets (n = 20) collected during 2018 and 2019 were examined for the prevalence of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli. We detected qnrS-positive E. coli in a total of 74 samples from feces (n = 59), the carcass surface (n = 7), and retail meat (n = 8). These 74 qnrS-positive isolates were tested for antimicrobial susceptibility to determine the minimum inhibitory concentrations (MICs) of certain antimicrobials and genetically characterized. Ampicillin-resistance accounted for 71 of the 74 isolates (96%), followed by resistance to oxytetracycline (57/74; 77%), enrofloxacin (ERFX) (56/74; 76%), sulfisoxazole (SUL) (56/74; 76%), trimethoprim (TMP) (49/74; 66%), and dihydrostreptomycin (48/74; 65%). All farm-borne SUL- and TMP-resistant isolates except one were obtained from samples from farm A where a combination of sulfadiazine and TMP was administered to the chickens. Concentrations of ERFX at which 50 and 90% of isolates were inhibited were 2 µg/mL and 32 µg/mL, respectively. Diverse pulsed-field gel electrophoresis (PFGE) patterns of XbaI-digested genomic DNA were observed in the qnrS-positive isolates from fecal samples. Several isolates from feces and the carcass surface had identical XbaI-digested PFGE patterns. S1-nuclease PFGE and Southern blot analysis demonstrated that 7 of 11 dfrA13-positive fecal isolates carried both the qnrS and dfrA13 genes on the same plasmid, and 2 of 3 dfrA1-positive isolates similarly carried both qnrS and dfrA1 on the same plasmid, although the PFGE patterns of XbaI-digested genomic DNA of the isolates were different. These results suggest that the qnrS gene is prevalent in chicken farms via horizontal transfer of plasmids and may partly be co-selected under the use of TMP.


Subject(s)
Chickens , Escherichia coli Proteins , Animals , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Farms , Plasmids/genetics , Prevalence , Thailand , Trimethoprim/pharmacology
5.
J Vet Sci ; 22(5): e68, 2021 09.
Article in English | MEDLINE | ID: mdl-34423604

ABSTRACT

BACKGROUND: Colistin and carbapenem-resistant bacteria have emerged and become a serious public health concern, but their epidemiological data is still limited. OBJECTIVES: This study examined colistin and carbapenem resistance in Escherichia coli and Salmonella from pigs, pig carcasses, and pork in Thailand, Lao PDR, and Cambodia border provinces. METHODS: The phenotypic and genotypic resistance to colistin and meropenem was determined in E. coli and Salmonella obtained from pigs, pig carcasses, and pork (n = 1,619). A conjugative experiment was performed in all isolates carrying the mcr gene (s) (n = 68). The plasmid replicon type was determined in the isolates carrying a conjugative plasmid with mcr by PCR-based replicon typing (n = 7). The genetic relatedness of mcr-positive Salmonella (n = 11) was investigated by multi-locus sequence typing. RESULTS: Colistin resistance was more common in E. coli (8%) than Salmonella (1%). The highest resistance rate was found in E. coli (17.8%) and Salmonella (1.7%) from Cambodia. Colistin-resistance genes, mcr-1, mcr-3, and mcr-5, were identified, of which mcr-1 and mcr-3 were predominant in E. coli (5.8%) and Salmonella (1.7%), respectively. The mcr-5 gene was observed in E. coli from pork in Cambodia. Two colistin-susceptible pig isolates from Thailand carried both mcr-1 and mcr-3. Seven E. coli and Salmonella isolates contained mcr-1 or mcr-3 associated with the IncF and IncI plasmids. The mcr-positive Salmonella from Thailand and Cambodia were categorized into two clusters with 94%-97% similarity. None of these clusters was meropenem resistant. CONCLUSIONS: Colistin-resistant E. coli and Salmonella were distributed in pigs, pig carcasses, and pork in the border areas. Undivided-One Health collaboration is needed to address the issue.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Pork Meat/microbiology , Salmonella/physiology , Animals , Cambodia , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Laos , Plasmids/physiology , Salmonella/genetics , Sus scrofa , Thailand
7.
Antibiotics (Basel) ; 10(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072965

ABSTRACT

The study aimed to examine the prevalence and genetic characteristics of ESBL-production and colistin resistance in Salmonella and Escherichia coli from pigs and pork in the border area among Thailand, Cambodia, Lao PDR, and Myanmar. Salmonella (n = 463) and E. coli (n = 767) isolates were collected from pig rectal swab from slaughterhouses (n = 441) and pork from retail markets (n = 368) during October 2017 and March 2018. All were determined for susceptibility to colistin and cephalosporins, ESBL production and mcr and ESBL genes. Salmonella was predominantly found in Cambodia (65.8%). Serovars Rissen (35.6%) and Anatum (15.3%) were the most common. The E. coli prevalence in pork was above 91% in all countries. Colistin-resistance rate in E. coli (10.4%) was significantly higher than Salmonella (2.6%). ESBL-producing Salmonella (1.9%) and E. coli (6.3%) were detected. The blaCTX-M-55 and blaCTX-M-14 were identified. The mcr-1 gene was detected in Salmonella (n = 12) and E. coli (n = 68). The mcr-1/blaCTX-M-55 and mcr-3/blaCTX-M-55 co-concurrence was observed in one Salmonella and three E. coli isolates, respectively. In conclusion, pigs and pork serve as carriers of colistin and new generation cephalosporins resistance. Testing for resistance to last line antibiotics should be included in national AMR surveillance program using One Health approach.

8.
Front Microbiol ; 12: 651461, 2021.
Article in English | MEDLINE | ID: mdl-33959112

ABSTRACT

Antibiotics are freqeuently used in the livestock sector in low- and middle-income countries for treatment, prophylaxis, and growth promotion. However, there is limited information into the zoonotic prevalence and dissemination patterns of antimicrobial resistance (AMR) within these environments. In this study we used pig farming in Thailand as a model to explore AMR; 156 pig farms were included, comprising of small-sized (<50 sows) and medium-sized (≥100 sows) farms, where bacterial isolates were selectively cultured from animal rectal and human fecal samples. Bacterial isolates were subjected to antimicrobial susceptibility testing (AST), and whole-genome sequencing. Our results indicate extensive zoonotic sharing of antibiotic resistance genes (ARGs) by horizontal gene transfer. Resistance to multiple antibiotics was observed with higher prevalence in medium-scale farms. Zoonotic transmission of colistin resistance in small-scale farms had a dissemination gradient from pigs to handlers to non-livestock contacts. We highly recommend reducing the antimicrobial use in animals' feeds and medications, especially the last resort drug colistin.

10.
J Antimicrob Chemother ; 76(8): 2012-2016, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33829268

ABSTRACT

OBJECTIVES: To define characteristics of Klebsiella pneumoniae complex (hereafter KP) isolates from healthy pigs, farm workers and their household members in Thailand. METHODS: A total of 839 individual rectal swabs from pigs on 164 farms and 271 faecal samples of humans working on pig farms and persons living in the same household in Khon Kaen, Thailand were screened for gut colonization by KP. Genomic sequences were investigated for antibiotic resistance and virulence genes. Phylogenetic analyses were performed in addition to comparison with isolates from previous studies from Thailand. RESULTS: KP was detected in approximately 50% of pig and human samples. In total, 253 KP isolates were obtained: 39% from pigs, 34% from farmers and 26% from individuals living on the same farm but without animal contact. MLST revealed high genetic diversity with 196 different STs distributed over four phylogroups (Kp1 to Kp4). Low prevalence of ESBL-KP (7.5%) and colistin-resistant KP (3.2%) was observed among pigs and humans. Remarkably, four convergent MDR and hypervirulent strains were observed: one from pigs (ST290) and three from humans [ST35, ST3415 (strain 90CP1), ST17 (strain 90CM2)]. Sharing of KP clones among pigs and humans was identified for some STs including ST4788, ST661, ST3541 and ST29. CONCLUSIONS: The study indicated a low prevalence of ESBL and mcr genes among KP isolated from pigs and healthy humans in Thailand and suggested the possibility of zoonotic transmission for a subset of circulating KP clones.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Farms , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/veterinary , Klebsiella pneumoniae/genetics , Metagenomics , Multilocus Sequence Typing , Phylogeny , Swine , Thailand , Virulence
11.
Microb Drug Resist ; 27(4): 571-584, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32898454

ABSTRACT

This study aimed to investigate antimicrobial resistance (AMR) characteristics of Escherichia coli isolates from pig origin (including pigs, pig carcass, and pork) and humans in Thailand and Lao People's Democratic Republic (PDR) border provinces. The majority of the E. coli isolates from Thailand (69.7%) and Lao PDR (63.3%) exhibited multidrug resistance. Class 1 integrons with resistance gene cassettes were common (n = 43), of which the most predominant resistance gene cassette was aadA1. The percentage of extended-spectrum beta-lactamase (ESBL) producers was 3.4 in Thailand and 3.2 in Lao PDR. The ESBL genes found were blaCTX-M14, blaCTX-M27, and blaCTX-M55, of which blaCTX-M55 was the most common (58.6%). Ser-83-Leu and Asp-87-Asn were the predominant amino acid changes in GyrA of ciprofloxacin-resistant isolates. Twenty-two percent of all isolates were positive for qnrS. Class 1 integrons carrying aadA1 from pigs (n = 1) and ESBL genes (blaCTX-M55 and blaCTX-M14) from pigs (n = 2), pork (n = 1), and humans (n = 7) were located on conjugative plasmids. Most plasmids (29.3%) were typed in the IncFrepB group. In conclusion, AMR E. coli are common in pig origin and humans in these areas. The findings confirm AMR as One Health issue, and highlight the need for comprehensive and unified collaborations within and between sectors on research and policy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Pork Meat/microbiology , Animals , Humans , Integrons/genetics , Laos , Microbial Sensitivity Tests , Plasmids , Swine , Thailand , beta-Lactamases/genetics
12.
Jpn J Infect Dis ; 74(3): 220-227, 2021 May 24.
Article in English | MEDLINE | ID: mdl-33250489

ABSTRACT

Food animal production is important for every country. Several antibiotic agents are used in poultry farming to reduce the economic losses arising from mostly untested infectious diseases. This continued study was performed to determine the prevalence of antibiotic-resistant Salmonella in broiler chickens, poultry farmers, and Salmonella bacteremia patients. A total of 121 Salmonella isolates were collected from the Thai provinces of Khon Kaen (65 isolates), Ratchaburi (43 isolates), and Phayao (13 isolates). Salmonella from chicken showed a high rate of resistance to nalidixic acid and tetracycline. Sixty-four percent of Salmonella isolates carried class 1 integrons (intI1 gene-positive). Among the 121 Salmonella isolates, there were 15 serotypes, with S. Enteritidis being the most common. A clonal relationship between the chicken and human isolates was demonstrated by 3 molecular typing methods: enterobacterial repetitive intergenic consensus polymerase chain reaction; pulsed-field gel electrophoresis; and high-throughput multilocus sequence typing. A spread of the sequence type 11 clone was found between chickens and humans. This study revealed a large-scale Salmonella outbreak in Thailand, a link between resistant bacteria from poultry farms and vertical transmission through the food chain, and horizontal transmission of resistance genes. These results can be used for future surveillance and monitoring.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Poultry Diseases/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella , Animals , Chickens , Disease Outbreaks , Farmers , Humans , Integrons/genetics , Poultry , Poultry Diseases/drug therapy , Poultry Diseases/epidemiology , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Salmonella Infections/drug therapy , Salmonella Infections/genetics , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/epidemiology , Thailand/epidemiology
13.
PLoS One ; 15(12): e0243099, 2020.
Article in English | MEDLINE | ID: mdl-33306684

ABSTRACT

Understanding the patterns and drivers of antibiotic use in livestock is crucial for tailoring efficient incentives for responsible use of antibiotics. Here we compared routines for antibiotic use between pig farms of two different levels of intensification in Khon Kaen province in Thailand. Among the 113 family-owned small-scale farms (up to 50 sows) interviewed did 76% get advice from the pharmacy about how to use the antibiotics and 84% used it primarily for treating disease. Among the 51 medium-scale-farms (100-500 sows) belonging to two companies did 100% get advice about antibiotic use from the company's veterinarian (P<0.0001) and 94% used antibiotics mostly as disease preventive measure (P<0.0001). In 2 small scale farms 3rd generation cephalosporins, tylosin or colistin were used; antibiotics belonging to the group of highest priority critically important antimicrobials for human medicine. Enrofloxacin, belonging to the same group of antimicrobials, was used in 33% of the small-scale and 41% of the medium-scale farms. In the latter farms, the companies supplied 3-4 antibiotics belonging to different classes and those were the only antibiotics used in the farms. The median and mean estimated expenditure on antibiotics per sow was 4.8 USD (IQR = 5.8) for small-scale farms and 7 USD and 3.4 USD for the medium-scale farms belonging to the two respective companies. Our observations suggest to target the following areas when pig farming transitions from small-scale to medium-scale: (i) strengthening access to professional animal health services for all farmers, (ii) review of the competence and role of veterinary pharmacies in selling antibiotics and (iii) adjustment of farming company animal health protocols towards more medically rational use of antibiotics.


Subject(s)
Animal Husbandry/statistics & numerical data , Anti-Bacterial Agents/therapeutic use , Animal Husbandry/methods , Animals , Farmers/statistics & numerical data , Female , Humans , Male , Middle Aged , Swine , Swine Diseases/prevention & control , Thailand
14.
Antibiotics (Basel) ; 9(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008077

ABSTRACT

The overall aim of the current study was to test the hypotheses that (i) antibiotic resistance in bacteria were more frequent in clinically health pigs in intensified company owned, medium-scale farms (MSFs) (100-500 sows) than in pigs in family-owned, small-scale farms (SSFs) (1-50 sows) and (ii) that farmers working at the MSFs were more prone to attain antibiotic resistant bacteria than farmers working at SSFs. The study was conducted in North-Eastern Thailand, comprising fecal Escherichia coli isolates from pigs, farmers working with the pigs (contact humans) and persons living in the same household as the farmer (non-contact humans) at 51 MSFs and 113 SSFs. Samples from all farms were also screened for methicillin-resistant staphylococcus aureus (MRSA), which was not detected in pig samples, but was found in one human sample. Susceptibility was tested by disc-diffusion for seven antibiotics commonly used in the study area. Resistance in pig isolates from MSFs were more frequent for chloramphenicol which (P < 0.001), trimethoprim/sulfamethoxazole (P < 0.001) and gentamicin (P < 0.05) compared with isolates from SSFs, whereas the opposite was true for tetracycline (P < 0.01). Resistance in the human isolates was lower than those in the isolates from pigs for tetracycline, trimethoprim/sulfamethoxazole and chloramphenicol (P < 0.001). The frequency of resistance in the contact human samples from SSFs and MSFs did not differ. There was no difference between isolates from contact and non-contact humans for any of the tested antibiotics. Multidrug resistance in isolates from pigs was 26%, significantly higher (P < 0.01) than the 13% from humans. The data indicate that (i) resistance to antibiotics, including those critical and highly important for human medicine, were more common in fecal E. coli from pigs at the MSFs than at the SSFs, whereas (ii) the resistance in fecal E. coli from pig farmers seemed not to be influenced by the level of intensification of the farm they were working at.

15.
Antibiotics (Basel) ; 9(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759641

ABSTRACT

To explore the risk of antimicrobial resistant (AMR) non-typhoidal Salmonella during asymptomatic infection passage between pet dogs and human caregivers in Khon Kaen, Thailand, one hundred forty paired fecal samples (n = 280) were obtained from companion dogs and their human caregivers, interviewed from 140 households during 2019-2020. The purified Salmonella isolates were serotype-identified and tested for antimicrobial resistance against ampicillin, ciprofloxacin, chloramphenicol, nalidixic acid, streptomycin, sulfamethoxazole-trimethoprim, and tetracycline. The homologous Salmonella isolate pairs (suggesting Salmonella infections may have been due to passage between each one of the pair, or derived from the same source) were subsequently characterized by serotype screening, pulsed field gel electrophoresis (PFGE), and Synchrotron Fourier transform infrared spectroscopy (SR-FTIR). The Salmonella prevalence observed in dogs, 12.86% (18/140), was not significantly different from that observed in humans, 17.86% (25/140) using McNemar's test. The AMR patterns (the patterns among the isolates of pet dogs and caregivers) and the serotypes (thirteen serotypes with 18 isolates from pet dogs plus thirteen serotypes with 25 isolates from humans) between pet dogs and humans were not significantly different using Pearson's chi-squared test. The homologous Salmonella isolates from the Salmonella-present households was 5.13% (2/39). This study demonstrated that the hypothesis that there is a high risk of Salmonella infection passage between dogs and humans with close contact in Khon Kaen is doubtful. Only 5.13% of homologous Salmonella isolates from Salmonella-present households were found in Khon Kaen, Thailand, although the prevalence of Salmonella-positive samples, serotypes, and antimicrobial resistance patterns were quite similar among the two populations.

16.
Pathogens ; 9(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878260

ABSTRACT

To evaluate the containment of antimicrobial-resistant (AMR) Salmonella contaminations of a HACCP slaughterhouse (HACCP SH) and a non-HACCP slaughterhouse (non-HACCPSH), 360 paired pig rectal (representing the farm pig status) and carcass samples (representing the contamination) were collected equally from the two slaughterhouses that serviced 6 and 12 farms, respectively, in Northeast Thailand (n = 720). The purified Salmonella isolates were serotype identified, antimicrobial susceptibility tested, and pulsed-field gel electrophoresis (PFGE) assessed. Four evaluations of two slaughterhouses were examined: (1) the means of slaughtering contamination rates (SCR) (to evaluate the contamination level by averaged farm SCRs): the HACCP SH decreased contamination (SCR: -48.89% ± 8.80%, n = 6), whereas the non-HACCP SH increased (SCR: 14.31% ± 9.35%, n = 12). (2) The serotype diversity: the HACCP SH decreased the diversity from the rectal group (110 isolates, 9 serotypes) to carcass group (23 isolates, 3 serotypes), whereas there was no decrease in the non-HACCP SH (rectal group (66 isolates, 14 serotypes) and carcass group (31 isolates, 10 serotypes)). (3) The AMR patterns: the HACCP SH decreased from rectal group (96 isolates, 7 patterns) to carcass group (22 isolates, 1 pattern), whereas there was no decrease from the non-HACCP SH rectal group (22 isolates, 7 patterns) to carcass group (48 isolates, 8 patterns). (4) The estimated indirect contamination rate (by serotype screening and PFGE confirmation): the HACCP SH was 60.87% (14/23), whereas the non-HACCP SH was 98.48% (65/66). This study indicates that both the slaughterhouses keep a high level of indirect contamination; the HACCP SH decreases Salmonella contaminations and reduces the AMR patterns, the non-HACCP SH increases contaminations.

17.
Vet World ; 12(8): 1311-1318, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31641313

ABSTRACT

AIMS: This study aimed to determine the prevalence and antimicrobial resistance pattern of Salmonella spp., and the genetic relatedness between isolates from broilers and pigs at slaughterhouses in Thailand. MATERIALS AND METHODS: Fecal samples (604 broilers and 562 pigs) were collected from slaughterhouses from April to July 2018. Salmonella spp. were isolated and identified according to the ISO 6579:2002. Salmonella-positive isolates were identified using serotyping and challenged with nine antimicrobial agents: Amoxicillin/clavulanate (AMC, 30 µg), ampicillin (AMP, 10 µg), ceftazidime (30 µg), chloramphenicol (30 µg), ciprofloxacin (CIP, 5 µg), nalidixic acid (NAL, 30 µg), norfloxacin (10 µg), trimethoprim/sulfamethoxazole (SXT, 25 µg), and tetracycline (TET, 30 µg). Isolates of the predominant serovar Salmonella Typhimurium were examined for genetic relatedness using pulsed-field gel electrophoresis (PFGE). RESULTS: Salmonella was detected in 18.05% of broiler isolates and 37.54% of pig isolates. The most common serovars were Kentucky, Give, and Typhimurium in broilers and Rissen, Typhimurium, and Weltevreden in pigs. Among broilers, isolates were most commonly resistant to antibiotics, NAL, AMP, TET, AMC, and CIP. Pig isolates most commonly exhibited antimicrobial resistance against AMP, TET, and SXT. Based on PFGE results among 52 S. Typhimurium isolates from broilers and pigs, a high genetic relatedness between broiler and pig isolates (85% similarity) in Cluster A and C from PFGE result was identified. CONCLUSION: The results revealed high cross-contamination between these two animal species across various provinces in Thailand.

18.
Vet World ; 12(1): 79-84, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30936658

ABSTRACT

BACKGROUND AND AIM: The genetic relationship among serotypes of Salmonella enterica from food animals, food of animal origin, and human is of interest as the data could provide an important clue for the source of human infection. This study aimed to determine the genetic relatedness of S. enterica from pig production and human in Thailand-Laos border provinces. MATERIALS AND METHODS: A total of 195 S. enterica serotypes isolated from pig and pork (n=178) and human (n=17) including four serotypes (Typhimurium, Rissen, Derby, and Stanley) were randomly selected to examine their genetic relatedness using highly conserved sequence of three genes (fim A, man B, and mdh). RESULTS: The results showed that 195 Salmonella isolates of four different serotypes were grouped into five different clusters, and members of the same Salmonella serotypes were found in the same cluster. Salmonella isolated from pig production and human in Thailand-Laos border provinces represented overlapping population and revealed a high degree of similarity, indicating close genetic relationship among the isolates. CONCLUSION: The results support that the determination of Salmonella serotyping combined with analysis of phylogenetic tree can be used track the clonal evolution and genetic diversity of Salmonella serotypes in different host species.

19.
J Vet Med Sci ; 80(12): 1839-1846, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30369553

ABSTRACT

Monophasic variants of Salmonella enterica serovar Typhimurium isolated in Thailand and Japan were characterized to elucidate the genetic basis of the monophasic phenotype, genetic relatedness, and antimicrobial resistance. A total of 20 Salmonella isolates agglutinated with anti-O4 and anti-H:i serum and not agglutinated with either anti-H:1 or anti-H:2 serum were identified as monophasic variants of Salmonella serovar Typhimurium because they harbored IS200, specific to this serovar, and lacked the fljB gene. An allele-specific PCR-based genotyping method that detects a clade-specific single nucleotide polymorphism indicated that seven swine isolates and one human isolate from Thailand were grouped into clade 1; five isolates from layer chicken houses and layer chicken feces from Japan were grouped into clade 8, together with two Salmonella serovar Typhimurium isolates from chicken houses in Japan; and five isolates from swine feces from Thailand and two isolates from layer chicken feces from Japan were grouped into clade 9. Multilocus sequencing typing demonstrated that sequence type (ST) 34 isolates were solely grouped into clade 9. Clade 1 and 8 isolates were assigned as ST19. Pulsed-field gel electrophoresis revealed multiple types within each of the clades. The presence of antimicrobial resistance genes and plasmid replicon type, of the clade 1 and 9 isolates were comparable to those reported for epidemic strains of monophasic variants. Our results suggest that monitoring monophasic variants of serovar Typhimurium is important for understanding of the spread of these variants in Thailand and Japan.


Subject(s)
Salmonella typhimurium/genetics , Animals , Chickens/microbiology , Flagellin/genetics , Genes, Bacterial , Genotype , Humans , Japan , Microbial Sensitivity Tests , Phenotype , Polymerase Chain Reaction , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Serogroup , Swine/microbiology , Thailand
20.
Jpn J Infect Dis ; 70(6): 628-634, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-28890516

ABSTRACT

Twelve nonreplicate carbapenemase-negative ertapenem (ETP)-nonsusceptible (CNENS) Escherichia coli isolates obtained at a Thai university hospital between 2010 and 2014 were characterized and compared with 2 carbapenemase-producing E. coli isolates from the same hospital. Eight unique pulsed-field gel electrophoresis patterns were obtained. All the isolates produced CTX-M-15 ß-lactamase and 2 either coexpressed CMY-2 cephalosporinase or showed increased efflux pump activity. Amino acid sequence analysis revealed that an OmpF defect (in 7 isolates) due to mutations generating truncated proteins or an IS1 insertion was more prevalent than a defect in OmpC was (no truncated proteins detected). Seven out of 10 isolates possessing OmpC variants with any OmpF defect were weakly ETP-resistant (minimum inhibitory concentrations [MICs] of 1-4 µg/mL) and imipenem (IPM)- and meropenem (MEM)-susceptible (MICs 0.125-0.5 µg/mL). Two isolates with ompC PCR-negative results and an OmpF defect showed higher carbapenem MICs (8-32, 1-8, and 1-4 µg/mL for ETP, IPM, and MEM, respectively) with the highest MICs associated with the additional efflux pump activity. Both carbapenemase producers possessing CTX-M-15 and a porin background identical to that in the CNENS isolates showed ETP, IPM, and MEM MICs of 128-256, 8, and 2-32 µg/mL, respectively. These findings suggest that a porin defect combined with CTX-M-15 production is the major mechanism of low carbapenem susceptibility among our CNENS isolates, which have potential to become strongly carbapenem-resistant because of additional carbapenemase or efflux pump activities.


Subject(s)
Bacterial Proteins/genetics , Cross Infection , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Hospitals, University , beta-Lactamases/genetics , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Cluster Analysis , Escherichia coli/classification , Escherichia coli/isolation & purification , Humans , Microbial Sensitivity Tests , Molecular Typing , Porins/genetics , Thailand/epidemiology , beta-Lactamases/biosynthesis , beta-Lactamases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...