Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38543564

ABSTRACT

The process of soil genesis unfolds as pioneering microbial communities colonize mineral substrates, enriching them with biomolecules released from bedrock. The resultant intricate surface units emerge from a complex interplay among microbiota and plant communities. Under these conditions, host rocks undergo initial weathering through microbial activity, rendering them far from pristine and challenging the quest for biomarkers in ancient sedimentary rocks. In addressing this challenge, a comprehensive analysis utilizing Gas Chromatography Mass Spectrometry (GC-MS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was conducted on a 520-Ma-old Cambrian rock. This investigation revealed a diverse molecular assemblage with comprising alkanols, sterols, fatty acids, glycerolipids, wax esters, and nitrogen-bearing compounds. Notably, elevated levels of bacterial C16, C18 and C14 fatty acids, iso and anteiso methyl-branched fatty acids, as well as fungal sterols, long-chained fatty acids, and alcohols, consistently align with a consortium of bacteria and fungi accessing complex organic matter within a soil-type ecosystem. The prominence of bacterial and fungal lipids alongside maturity indicators denotes derivation from heterotrophic activity rather than ancient preservation or marine sources. Moreover, the identification of long-chain (>C22) n-alkanols, even-carbon-numbered long chain (>C20) fatty acids, and campesterol, as well as stigmastanol, provides confirmation of plant residue inputs. Furthermore, findings highlight the ability of contemporary soil microbiota to inhabit rocky substrates actively, requiring strict contamination controls when evaluating ancient molecular biosignatures or extraterrestrial materials collected.

2.
Front Microbiol ; 13: 913452, 2022.
Article in English | MEDLINE | ID: mdl-35814676

ABSTRACT

The Chiquini and Galaxias caves contain speleothems that are templated by long fungal structures. They have been associated with the carbonate lacustrine deposits in the margins of the Coipasa and Uyuni Salar basins. During a wetter episode, such carbonates formed at the end of the last glaciation raising the lake level to more than 100 m in the Tauca events (15-12 ky). Such an event flooded the caves that eventually became a cryptic habitat in the lake. The caves show bizarre speleothems framed by large (>1 m) fungal buildings covering the older algal mineralized structures. Although the origin of the caves is not fully understood, the occurrence of two carbonatic units with very distinctive fabric suggests that they formed in two separated humid events. In this regard, the mineralized algal structures, showing the same features as the lacustrine carbonates, likely formed during the Tauca flooding events in the terminal Pleistocene that inundated older caves. The different caves were exposed to the atmosphere after a drop in the lake level that promoted alluvial erosion by <12-10 ky (Ticaña episode) under arid conditions. A last humid episode rising the lake surface 10 m above the Salar level, which was not enough to inundate the caves a second time, drove the formation of the biospeleothems by fungi biomineralization. The abundance and size of the preserved fungal structures suggest that they were sustained by a stable hydrological activity plus a constant organic supply. While nutrients could have been primarily sourced from the vegetal communities that occupied the exhumated lake margins, they might have also been released from the lacustrine carbonatic unit. The combination of hydrology and biological activities were likely determinants for a fast rock dissolution and mineralization ending in the construction of the fungal biospeleothems.

3.
Astrobiology ; 21(11): 1387-1405, 2021 11.
Article in English | MEDLINE | ID: mdl-34449260

ABSTRACT

In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2 to 4)-, NOx(2,3)-, FeOx(1,2)-, SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4--, and NO2--/NO3--mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathways.


Subject(s)
Exobiology , Mars , Minerals , Silicon Dioxide , Technology
4.
Microorganisms ; 9(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34442671

ABSTRACT

The drilling of the Rio Tinto basement has provided evidence of an underground microbial community primarily sustained by the Fe and S metabolism through the biooxidation of pyrite orebodies. Although the gossan is the microbial activity product, which dates back to the Oligocene (25 Ma), no molecular evidence of such activity in the past has been reported yet. A Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) molecular analysis of a subsurface sample in the Peña de Hierro basement has provided novel data of the ancient underground microbial community. It shows that the microbial remains are preserved in a mineral matrix composed of laminated Fe-oxysulfates and K- and Na-bearing sulfates alternating with secondary silica. In such a mineral substrate, the biomolecule traces are found in five different microstructure associations, (1) <15 micron-sized nodular microstructures composed of POn(2≤n≤4)-, (2) <30 micron-size micronodules containing fatty acids, acylglycerides, and alkanol chains, (3) <20 micro-sized nodules containing NOn-(2≤n≤3) ions, (4) 40-micron size nodules with NH4+ and traces of peptides, and (5) >200-micron thick layer with N-bearing adducts, and sphingolipid and/or peptide traces. It suggests the mineralization of at least five microbial preserved entities with different metabolic capabilities, including: (1) Acidiphilium/Tessaracoccus-like phosphate mineralizers, (2) microbial patches preserving phosphate-free acylglycerides bacteria, (3) nitrogen oxidizing bacteria (e.g., Acidovorax sp.), (4) traces of heterotrophic ammonifying bacteria, and (5) sphingolipid bearing bacteria (e.g., Sphingomonadales, and δ-Proteobacteria) and/or mineralized biofilms. The primary biooxidation process acted as a preservation mechanism to release the inorganic ions that ultimately mineralized the microbial structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...