Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834370

ABSTRACT

Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFß signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.


Subject(s)
Asteraceae , Colorectal Neoplasms , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Methanol/pharmacology , HT29 Cells , Cytoskeleton , Cell Proliferation , Colorectal Neoplasms/drug therapy
3.
Plants (Basel) ; 12(13)2023 06 29.
Article in English | MEDLINE | ID: mdl-37447060

ABSTRACT

Dittrichia viscosa uptake and translocation of the metalloid As is not fully understood and some data are contradictory, but its adaptability to this pollutant is known and is dependent on its genetic variability. D. viscosa is not a hyperaccumulator plant, but it can grow in high-drought conditions while still producing large biomass, even tolerating significant concentrations of As3+ and As5+. In spite of these remarkable characteristics, adaptive modification of performances is not predictable in wild populations. In previous work, we established experimental clonal populations to perform a functional study on the aquaporin NIP1.1. Here, we propose a strategy to select a clonal population of D. viscosa with a defined phenotype related to As tolerance and to reduced NIP1.1 expression levels for phytoremediation applications. From the previous work, we selected four independent clones, two of them belonging to the weak population (W8 and W9) and the other two belonging to the strong population (S1 and S3). The weak and strong populations differ for a different expression ratio root/shoot of DvNip1;1 that brings a different tolerance to As presence. The stress response of the populations, revealed by the CAT enzymatic test, was statistically correlated to the clones, but not to As uptake. Performance of the selected plants on a second unrelated metallic pollutant, Cd, was evaluated, showing that Cd uptake is also independent from the tolerant phenotype. In vitro culture methods using solid media and temporary immersion bioreactors were compared to propose an optimized combined protocol. The procedure yielded propagation of genetically stable tolerant clonal lines with good uptake of As and Cd. The plants, mass-produced with the developed in vitro protocol, were able to maintain their acquired abilities and are potentially able be later applied in phytoremediation or contaminated areas' re-naturalization.

4.
J Sci Food Agric ; 99(5): 2504-2512, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30379330

ABSTRACT

BACKGROUND: Table olive fermentation is an unpredictable process and frequently performed using traditional practices often inadequate to obtain products with acceptable quality and safety standards. In the present study, the efficacy of selected yeast strains as starters to drive fermentations of green and black table olives by the Greek method was investigated. Pilot-scale production by spontaneous fermentation as a control, olives started with previously selected Saccharomyces cerevisiae strains and fermentation driven by commercial S. cerevisiae baker's yeast strain were carried out for each of Manzanilla, Picual and Kalamàta table olive cultivars. RESULTS: Time of fermentation was significantly shortened to 40 days to complete the transformation process for all three tested cultivars. Inoculated table olives were enhanced in their organoleptic and nutritional properties in comparison with corresponding samples obtained by spontaneous fermentation. The use of starters was also able to improve safety traits of table olives in terms of biogenic amine reduction as well as absence of undesired microorganisms at the end of the process. CONCLUSIONS: Autochthonous, but also non-autochthonous, yeasts can be used to start and control table olive fermentations and can significantly improve quality and safety aspects of table olives produced by many smallholder farmers. © 2018 Society of Chemical Industry.


Subject(s)
Olea/microbiology , Saccharomyces cerevisiae/metabolism , Fermentation , Food Microbiology , Fruit/chemistry , Fruit/microbiology , Greece , Olea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...