Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 9(6): 1088-1103, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37396863

ABSTRACT

Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.

2.
Chem Sci ; 14(23): 6259-6268, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325137

ABSTRACT

The hygroscopicity and pH of aqueous microdroplets and smaller aerosols control their impacts on human health and the climate. Nitrate depletion and chloride depletion through the partitioning of HNO3 and HCl into the gas phase are processes that are enhanced in micron-sized and smaller aqueous droplets and this depletion influences both hygroscopicity and pH. Despite a number of studies, uncertainties remain about these processes. While acid evaporation and the loss of HCl or HNO3 have been observed during dehydration, there is a question as to the rate of acid evaporation and whether this can occur in fully hydrated droplets at higher relative humidity (RH). To directly elucidate the kinetics of nitrate and chloride depletion through evaporation of HNO3 and HCl, respectively at high RH, single levitated microdroplets are probed with cavity-enhanced Raman spectroscopy. Using glycine as a novel in situ pH probe, we are able to simultaneously measure changes in microdroplet composition and pH over timescales of hours. We find that the loss of chloride from the microdroplet is faster than that of nitrate, and the calculated rate constants infer that depletion is limited by the formation of HCl or HNO3 at the air-water interface and subsequent partitioning into the gas phase.

3.
J Phys Chem Lett ; 13(12): 2824-2829, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35324217

ABSTRACT

Amino acids (AAs), the building blocks of proteins, are enriched by several orders of magnitude in sea spray aerosols compared to ocean waters. This suggests that AAs may reside at the air-water interface and be highly surface active. Using surface tension measurements, infrared reflection-absorption spectroscopy, and molecular dynamics simulations, we show that AAs are surface active and that salts and low-pH environments are drivers of surface activity. At typical sea spray salt concentrations and pH values, we determine that the surface coverage of hydrophobic AAs increases by approximately 1 order of magnitude. Additionally, divalent cations such as Ca2+ and Mg2+ can further increase AA surface propensity, particularly at neutral pH. Overall, these results indicate that AAs are likely to be found at increased concentrations at the surface of sea spray aerosols, where they can impact the cloud activation properties of the aerosol and enhance peptide formation under certain conditions.


Subject(s)
Amino Acids , Salts , Aerosols/chemistry , Salts/chemistry , Surface Tension , Water/chemistry
4.
Environ Sci Technol ; 55(15): 10291-10299, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34279914

ABSTRACT

The oxidation of S(IV) is a critical step in the fate of sulfur dioxide emissions that determines the amount of sulfate aerosol in the atmosphere. Herein, we measured accelerated S(IV) oxidation rates in micron-sized aqueous aerosols compared to bulk solutions. We have investigated both buffered and unbuffered systems across a range of pH values in the presence of atmospherically relevant transition-metal ions and salts and consistently found the oxidation rate to be accelerated by ca. 1-2 orders of magnitude in the aerosol. This enhancement is greater than can be explained by the enrichment of species in the aerosol compared to the bulk and indicates that surface effects and potentially aerosol pH gradients play important roles in the S(IV) oxidation process in the aqueous aerosol. In addition, our experiments were performed with dissolved S(IV) ions (SO32-/HSO3-), allowing us to demonstrate that acceleration occurs in the condensed phase showing that enhanced sulfate formation is not exclusively due to gas-aerosol partitioning or interfacial SO2 oxidation. Our findings are an important step forward in understanding larger than expected sulfate concentrations observed in the atmosphere and show that inorganic oxidation processes can be accelerated in micron-sized aqueous droplets compared to the bulk solution.


Subject(s)
Air Pollutants , Aerosols , Atmosphere , Catalysis , Sulfates
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33376210

ABSTRACT

Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 µm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean-atmosphere facility, provide convincing data to show that acidification occurs "across the interface" within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.


Subject(s)
Aerosols/chemistry , Seawater/chemistry , Air , Atmosphere/chemistry , Environment , Humans , Hydrogen-Ion Concentration , Oceans and Seas , Phytoplankton , Seawater/analysis
6.
Chem Sci ; 11(39): 10647-10656, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33144932

ABSTRACT

The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which can be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a pK a shift of 1.1 ± 0.6, yielding a predicted surface pK a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk pK a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface pK a can be predicted from MD simulations.

7.
J Phys Chem Lett ; 10(15): 4476-4483, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31298863

ABSTRACT

The pH of aqueous aerosols, as well as cloud and fog droplets, has an important influence on the chemistry that takes place within these unique microenvironments. Utilizing conjugate acid/base pairs to infer pH changes, we investigate, for the first time, changes in aerosol pH upon coalescence. In particular, we show that the pH within individual aqueous aerosols that are ∼8 µm in diameter can be titrated via droplet coalescence in an aerosol optical tweezer. Using sulfate/bisulfate and carbonate/bicarbonate as model systems, the pH of trapped aerosols is determined before and after introduction of smaller aerosols containing a strong acid. The pH change upon coalescence with the smaller, acidic aerosol is calculated using specific ion interaction theory. Furthermore, we show that the pH of an individual aerosol can be altered along a fairly wide range of pH values, paving the way for future studies requiring rigorous pH control of an aqueous aerosol.

SELECTION OF CITATIONS
SEARCH DETAIL
...