Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
3.
Adv Exp Med Biol ; 1269: 15-21, 2021.
Article in English | MEDLINE | ID: mdl-33966189

ABSTRACT

Tumor radiotherapy relies on intracellular oxygen (O2) to generate reactive species that trigger cell death, yet hypoxia is common in cancers of the breast. De novo lipid synthesis in tumors supports cell proliferation but also may lead to unusually high levels of the 16:1 palmitoleoyl (Y) phospholipid tail, which is two carbons shorter than the 18:1 oleoyl (O) tail abundant in normal breast tissue. Here, we use atomic resolution molecular dynamics simulations to test two hypotheses: (1) the shorter, 16:1 Y, tail of the de novo lipid biosynthesis product 1-palmitoyl,2-palmitoleoyl-phosphatidylcholine (PYPC) promotes lower membrane permeability relative to the more common lipid 1-palmitoyl,2-oleoylphosphatidylcholine (POPC), by reducing oxygen solubility in the interleaflet region, and (2) cholesterol further lessens the permeability of PYPC by reducing overall O2 solubility and promoting PYPC tail order adjacent to the rigid cholesterol ring system. The simulations conducted here indicate that PYPC has a permeability of 14 ± 1 cm/s at 37 °C, comparable to 15.4 ± 0.4 cm/s for POPC. Inclusion of cholesterol in a 1:1 ratio with phospholipid intensifies the effect of chain length, giving permeabilities of 10.2 ± 0.2 cm/s for PYPC/cholesterol and 11.0 ± 0.6 cm/s for POPC/cholesterol. These findings indicate that PYPC may not substantially influence membrane-level oxygen flux and is unlikely to hinder breast tissue oxygenation.


Subject(s)
Breast Neoplasms , Lipid Bilayers , Cholesterol , Humans , Molecular Dynamics Simulation , Oxygen , Permeability , Phosphatidylcholines
4.
Adv Exp Med Biol ; 1269: 137-142, 2021.
Article in English | MEDLINE | ID: mdl-33966208

ABSTRACT

Molecular oxygen (O2) permeability coefficients for lipid bilayers have previously been estimated using both electron paramagnetic resonance (EPR) oximetry and molecular dynamics simulation data. Yet, neither technique captures the fluxes that exist physiologically. Here, the dynamic steady state is modeled using a stochastic approach built on atomic resolution molecular dynamics simulation data. A Monte Carlo Markov chain technique is used to examine membrane-level fluxes of oxygen in lipid-water systems. At steady state, the concentration of oxygen is found to be higher inside the model membranes than in surrounding water, consistent with the known favorable partitioning of O2 toward the lipid phase. Pure phospholipid 1-palmitoyl,2-oleoyl-phosphatidylcholine (POPC) bilayers accrue ~40% more O2 molecules at steady state than POPC/cholesterol bilayers (1:1 molecular ratio) mimicking the red blood cell membrane. Steady-state levels of oxygen were reached inside both bilayer types within the same timeframe, but depletion of oxygen from the bilayer interior occurred 17% faster for POPC than for POPC/cholesterol. Likewise, first-order rate constants estimated for accrual to steady state were the same for POPC and POPC/cholesterol, at 190 µs-1, while first-order rate constants for depletion of the accrued O2 from the bilayers differed, at 95 µs-1 for POPC and 81 µs-1 for POPC/cholesterol (lower by 15%). These results are consistent with prior experiments in red blood cells (RBCs) with varying membrane cholesterol content, in which additional cholesterol slowed oxygen uptake and release. Further work is needed to understand whether differences in RBC membrane cholesterol content would affect the delivery of oxygen to tissues.


Subject(s)
Oxygen , Phosphatidylcholines , Cholesterol , Lipid Bilayers , Markov Chains
5.
Appl Magn Reson ; 52(10): 1261-1289, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37292189

ABSTRACT

The role of membrane cholesterol in cellular function and dysfunction has been the subject of much inquiry. A few studies have suggested that cholesterol may slow oxygen diffusive transport, altering membrane physical properties and reducing oxygen permeability. The primary experimental technique used in recent years to study membrane oxygen transport is saturation-recovery electron paramagnetic resonance (EPR) oximetry, using spin-label probes targeted to specific regions of a lipid bilayer. The technique has been used, in particular, to assess the influence of cholesterol on oxygen transport and membrane permeability. The reliability of such EPR recordings at the water-lipid interface near the phospholipid headgroups has been challenged by all-atom molecular dynamics (MD) simulation data that show substantive agreement with spin-label probe measurements throughout much of the bilayer. This work uses further MD simulations, with an updated oxygen model, to determine the location of the maximum resistance to permeation and the rate-limiting barrier to oxygen permeation in 1-palmitoyl,2-oleoylphosphatidylcholine (POPC) and POPC/cholesterol bilayers at 25 and 35°C. The current simulations show a spike of resistance to permeation in the headgroup region that was not detected by EPR but was predicted in early theoretical work by Diamond and Katz. Published experimental nuclear magnetic resonance (NMR) oxygen measurements provide key validation of the MD models and indicate that the positions and relative magnitudes of the phosphatidylcholine resistance peaks are accurate. Consideration of the headgroup-region resistances predicts bilayer permeability coefficients lower than estimated in EPR studies, giving permeabilities lower than the permeability of unstirred water layers of the same thickness. Here, the permeability of POPC at 35°C is estimated to be 13 cm/s, compared with 10 cm/s for POPC/cholesterol and 118 cm/s for simulation water layers of similar thickness. The value for POPC is 12 times lower than estimated from EPR measurements, while the value for POPC/cholesterol is 5 times lower. These findings underscore the value of atomic resolution models for guiding the interpretation of experimental probe-based measurements.

6.
Adv Exp Med Biol ; 977: 9-14, 2017.
Article in English | MEDLINE | ID: mdl-28685421

ABSTRACT

Aberrations in cholesterol homeostasis are associated with several diseases that can be linked to changes in cellular oxygen usage. Prior biological and physical studies have suggested that membrane cholesterol content can modulate oxygen delivery, but questions of magnitude and biological significance remain open for further investigation. Here, we use molecular dynamics simulations in a first step toward reexamining the rate impact of cholesterol on the permeation of oxygen through phospholipid bilayers. The simulation models are closely compared with published electron paramagnetic resonance (EPR) oximetry measurements. The simulations predict an oxygen permeability reduction due to cholesterol but also suggest that the EPR experiments may have underestimated resistance to oxygen permeation in the phospholipid headgroup region.


Subject(s)
Cell Membrane Permeability , Cell Membrane/metabolism , Cholesterol/pharmacology , Lipid Bilayers/metabolism , Oxygen/pharmacokinetics , Animals , Cell Membrane/drug effects , Diffusion , Electron Spin Resonance Spectroscopy , Molecular Dynamics Simulation
7.
Biophys J ; 112(11): 2336-2347, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28591606

ABSTRACT

Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention.


Subject(s)
Cell Membrane Permeability/physiology , Cholesterol/metabolism , Oxygen/metabolism , Biological Transport , Cholesterol/chemistry , Diffusion , Hydrophobic and Hydrophilic Interactions , Kinetics , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Oxygen/chemistry , Phosphatidylcholines/chemistry , Solubility , Water/chemistry
8.
Acta Crystallogr C ; 68(Pt 3): m69-72, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22382537

ABSTRACT

The structures of tricarbonyl(formylcyclopentadienyl)manganese(I), [Mn(C(6)H(5)O)(CO)(3)], (I), and tricarbonyl(formylcyclopentadienyl)rhenium(I), [Re(C(6)H(5)O)(CO)(3)], (II), were determined at 100 K. Compounds (I) and (II) both possess a carbonyl group in a trans position relative to the substituted C atom of the cyclopentadienyl ring, while the other two carbonyl groups are in almost eclipsed positions relative to their attached C atoms. Analysis of the intermolecular contacts reveals that the molecules in both compounds form stacks due to short attractive π(CO)...π(CO) and π(CO)...π interactions, along the crystallographic c axis for (I) and along the [201] direction for (II). Symmetry-related stacks are bound to each other by weak intermolecular C-H...O hydrogen bonds, leading to the formation of the three-dimensional network.

SELECTION OF CITATIONS
SEARCH DETAIL
...