Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38451146

ABSTRACT

Understanding the physical-chemical processes ruling the interaction of particles (atoms, molecules, and ions) with surfaces is fundamental in several research fields, such as heterogeneous catalysis, astrochemistry, and nuclear fusion. In particular, the interaction of hydrogen isotopes with plasma facing materials represents a high-priority research task in the fusion community. Such studies are essential to ensure the successful operation of experimental fusion reactors, such as the tokamak ITER. In this work, we present a surface science apparatus developed to study ion-surface interaction in fusion relevant systems. It combines laser-based techniques with contaminant-free ion/molecular beams, mass spectrometry, and surface science tools such as low-energy electron diffraction and Auger electron spectroscopy. It allows to cover a wide range of sample temperatures, from 130 to 2300 K, by changing the heating rate of samples from 0.1 to 135 K/s and maintaining the linearity of the heating ramps, a powerful feature to gain insight on adsorption, absorption, and desorption mechanisms. Experimental calibration and performance are presented in detail. Moreover, to provide a factual overview of the experimental capabilities, we focus on two different applications: the protocol used to clean a W(110) single crystal sample and the development of laser temperature programmed desorption to study helium retention in tungsten.

3.
J Phys Condens Matter ; 26(18): 185003, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24728034

ABSTRACT

At monolayer coverage, silicene on Ag(1 1 1) may present different structural phases depending on the growth conditions. At multilayer coverage, only one structural phase has been reported: the [Formula: see text] phase. However, no link between the structural arrangement of the monolayer and that of the multilayer has been addressed. In this paper, reporting experimental work based on low-energy electron diffraction and scanning tunneling microscopy, we focus on the structural aspects of a multilayer film of silicene. We demonstrate that it exhibits one structural arrangement, namely the [Formula: see text] form, but with different domain orientations resulting from the structural properties of the initial wetting monolayer.


Subject(s)
Graphite/chemistry , Silicon/chemistry , Diffusion , Electrons , Silver/chemistry , Surface Properties
4.
J Chem Phys ; 134(1): 014701, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21219014

ABSTRACT

The interaction of H atoms having relatively low average kinetic energy (∼0.025 eV) with both perfectly clean and D-covered HOPG surfaces is investigated using high resolution electron energy loss spectroscopy. From this study we confirm, in a controlled fashion, the presence of the theoretically predicted adsorption barrier since no adsorption is detected for such H atoms on HOPG. Moreover, we demonstrate that the exposure of a D saturated HOPG surface to these H atoms results in the complete removal of adatoms, with no further adsorption despite the prediction of the adsorption barrier to vanish for H dimers in para configuration. Therefore, the recombinative abstraction mechanism which competes with the adsorption process is more efficient.


Subject(s)
Graphite/chemistry , Hydrogen/chemistry , Adsorption , Kinetics , Surface Properties
5.
J Chem Phys ; 128(6): 064702, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18282062

ABSTRACT

Organic-metal interfaces, in particular, self-assembling systems, are interesting in the field of molecular electronics. In this study, we have investigated the formation of the Ag(110)-iron phthalocyanine (FePc) interface in a coverage range of less than 1 and up to 2 ML using synchrotron based photoelectron spectroscopy and low energy electron diffraction. As-deposited FePc forms a densely packed first layer exhibiting a 3 x 2c(6 x 2) symmetry. Upon thermal treatment the order at the interface is modified depending on the initial FePc coverage, resulting in less densely packed but still ordered superstructures. The first monolayer is relatively strongly bound to the substrate, leading to the formation of an interface state just below the Fermi level. The highest occupied molecular orbital of FePc in the second layer is found at 1 eV higher binding energy compared to the interface state.


Subject(s)
Indoles/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Silver/chemistry , Electronics , Iron/chemistry , Isoindoles , Surface Properties
6.
J Chem Phys ; 123(12): 124701, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16397948

ABSTRACT

The adsorption of H/D atoms on the graphite (0001) surface is investigated by means of both high-resolution electron-energy loss spectroscopy (HREELS) and periodic first-principle density-functional theory. The two methods converge towards two modes of adsorption: adsorption in clusters of about four hydrogen atoms and adsorption in pairs of atoms on contiguous carbon sites. The desorption energies estimated from the calculated dissociation energies range from 8 to 185 kJ mol(-1) leading to an estimated surface coverage at saturations of 30-44 at. %. These results are compared with previous thermal desorption spectroscopy results. New HREEL signal assignments are proposed based on quantum calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...