Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(45): 28370-28374, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30412217

ABSTRACT

Chemical functionalization of graphene is one method pursued to engineer new properties into a graphene sheet. Graphene oxide is the most commonly used chemical derivative of graphene. Here we present experimental evidence for the formation of enolate moieties when oxygen atoms are added to the graphene basal plane. The exotic functional groups are stabilized by simultaneous bond formation between the graphene sheet and the underlying Ir(111) substrate. Scanning tunneling microscopy images demonstrate the patterned nature of C-O bond formation and X-ray photoelectron spectroscopy and high-resolution electron energy loss spectroscopy are used to characterize the enolate moiety. The results present a new mechanism for the formation of patterned graphene oxide and provide evidence of a functional group rarely considered for graphene oxide materials.

2.
Chemphyschem ; 2018 May 06.
Article in English | MEDLINE | ID: mdl-29732680

ABSTRACT

Original reaction pathways can be explored in the on-surface synthesis approach where small aromatic precursors are confined to the surface of single crystal metals. The bis-indanedione molecule reacted with itself on silver surfaces in different ways, through a Knoevenagel reaction or an oxidative coupling, leading to the formation of a variety of new molecular compounds and covalently-linked 1D or 2D networks. Noteworthy, original reaction products were obtained that cannot be synthesized in traditional solvent-based chemistry. The lowest activation temperature for the homo-coupling reactions was found on the Ag(111) surface. The Ag(110) was highly selective in terms of coupling reaction type, while on Ag(100) the temperature could finely control the selectivity. The on-surface synthesis approach is shown here to be particularly efficient to produce original compounds in mild conditions, using activation temperatures as low as 200 °C. The different structures were characterized by scanning tunnelling microscopy (STM) together with X-ray photoelectron emission spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS).

3.
ACS Nano ; 12(1): 513-520, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29253339

ABSTRACT

Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H-H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.

4.
Nat Commun ; 8: 14735, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368038

ABSTRACT

In the blooming field of on-surface synthesis, molecular building blocks are designed to self-assemble and covalently couple directly on a well-defined surface, thus allowing the exploration of unusual reaction pathways and the production of specific compounds in mild conditions. Here we report on the creation of functionalized organic nanoribbons on the Ag(110) surface. C-H bond activation and homo-coupling of the precursors is achieved upon thermal activation. The anisotropic substrate acts as an efficient template fostering the alignment of the nanoribbons, up to the full monolayer regime. The length of the nanoribbons can be sequentially increased by controlling the annealing temperature, from dimers to a maximum length of about 10 nm, limited by epitaxial stress. The different structures are characterized by room-temperature scanning tunnelling microscopy. Distinct signatures of the covalent coupling are measured with high-resolution electron energy loss spectroscopy, as supported by density functional theory calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...