Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5005, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886372

ABSTRACT

Fauna is highly abundant and diverse in soils worldwide, but surprisingly little is known about how it affects soil organic matter stabilization. Here, we review how the ecological strategies of a multitude of soil faunal taxa can affect the formation and persistence of labile (particulate organic matter, POM) and stabilized soil organic matter (mineral-associated organic matter, MAOM). We propose three major mechanisms - transformation, translocation, and grazing on microorganisms - by which soil fauna alters factors deemed essential in the formation of POM and MAOM, including the quantity and decomposability of organic matter, soil mineralogy, and the abundance, location, and composition of the microbial community. Determining the relevance of these mechanisms to POM and MAOM formation in cross-disciplinary studies that cover individual taxa and more complex faunal communities, and employ physical fractionation, isotopic, and microbiological approaches is essential to advance concepts, models, and policies focused on soil organic matter and effectively manage soils as carbon sinks, nutrient stores, and providers of food.


Subject(s)
Soil Microbiology , Soil , Soil/chemistry , Animals , Ecosystem , Organic Chemicals , Minerals/chemistry , Carbon/chemistry , Carbon/metabolism , Microbiota
2.
Commun Biol ; 2: 441, 2019.
Article in English | MEDLINE | ID: mdl-31815196

ABSTRACT

Earthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO2. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content. We show that much of this microbial carbon is not associated with mineral surfaces and emphasise the functional importance of particulate organic matter for long-term carbon sequestration. Our findings suggest that while earthworms do not necessarily affect soil organic carbon stocks, they do increase the resilience of soil carbon to natural and anthropogenic disturbances. Our results have implications for climate change mitigation and challenge the assumption that mineral-associated organic matter is the only relevant pool for soil carbon sequestration.


Subject(s)
Biotransformation , Microbiota , Oligochaeta/physiology , Phytochemicals/chemistry , Plants , Soil/chemistry , Animals , Carbon/chemistry , Carbon Cycle , Plants/chemistry , Soil Microbiology
3.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Article in English | MEDLINE | ID: mdl-29961854

ABSTRACT

Small twigs represent a substantial input of organic carbon into forest soils, but potential influencing factors on their decomposition have rarely been investigated. Here, we studied potential effects of twig size on decomposition and associated composition and activity of microbial communities during decomposition. Because the surface area for microbial colonization and the volume of accessible substrate increases with decreasing twig size, we hypothesized that twig size affects both microbial community and decomposition rate. Litterbags with twigs (Salix caprea) of two different diameters were placed within the litter layer and consecutively collected over a seven-year period. We determined the mass loss and microbial measures after each sampling event. The observed microbial parameters suggested a faster microbial colonization of thin twigs, where the proportion of bacteria was higher than in thick twigs. The development of the microbial community in thick twigs was more gradual and the proportion of fungi was higher. Despite this differential and successional development of microbial communities (and against our hypothesis), the mass loss among different twig diameters did not differ after our seven-year experiment, indicating that surface-to-volume ratios, though a primary control on microbial succession, may have limited predictive power for twig decomposition rates.


Subject(s)
Bacteria/classification , Fungi/classification , Microbiota/physiology , Salix/microbiology , Soil Microbiology , Forests , Plant Leaves/microbiology , Soil/chemistry
4.
J Environ Manage ; 209: 216-226, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29294447

ABSTRACT

Reclamation of post-mining sites commonly results in rapid accrual of carbon (C) and nitrogen (N) contents due to increasing plant inputs over time. However, little information is available on the distribution of C and N contents with respect to differently stabilized soil organic matter (SOM) fractions during succession or as a result of different reclamation practice. Hence, it remains widely unknown how stable or labile these newly formed C and N pools are. Gaining a deeper understanding of the state of these pools may provide important implications for reclamation practices with respect to C sequestration. We thus investigated C, N, and plant-derived compounds in bulk soil and SOM fractions during succession in post-mining chronosequences (reclaimed with overburden or salvaged topsoil) located along a northwest to southeast transect across the USA. Our results indicate that current reclamation practices perform well with respect to rapid recovery of soil aggregates and the partitioning of C and N to different SOM fractions, these measures being similar to those of natural climax vegetation sites already 2-5 years after reclamation. A general applicability of our results to other post-mining sites with similar reclamation practices may be inferred from the fact that the observed patterns were consistent along the investigated transect, covering different climates and vegetation across the USA. However, regarding SOM stability, the use of salvaged topsoil may be beneficial as compared to that of overburden material because C and N in the fraction regarded as most stable was by 26 and 35% lower at sites restored with overburden as compared to those restored with salvaged topsoil. Plant-derived compounds appeared to be mainly related to bio-available particulate organic matter and particulate organic matter partly stabilized within aggregates, challenging the long-term persistence of plant input C in post-mining soils.


Subject(s)
Carbon/analysis , Nitrogen/analysis , Mining , Particulate Matter , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...