Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mater Struct ; 57(4): 56, 2024.
Article in English | MEDLINE | ID: mdl-38601013

ABSTRACT

The steel-concrete interface (SCI) is known to play a major role in corrosion of steel in concrete, but a fundamental understanding is still lacking. One reason is that concrete's opacity complicates the study of internal processes. Here, we report on the application of bimodal X-ray and neutron microtomography as in-situ imaging techniques to elucidate the mechanism of steel corrosion in concrete. The study demonstrates that the segmentation of the specimen components of relevance-steel, cementitious matrix, aggregates, voids, corrosion products-obtained through bimodal X-ray and neutron imaging is more reliable than that based on the results of each of the two techniques separately. Further, we suggest the combination of tomographic in-situ imaging with ex-situ SEM analysis of targeted sections, selected based on the segmented tomograms. These in-situ and ex-situ characterization techniques were applied to study localized corrosion in a very early stage under laboratory chloride-exposure conditions, using reinforced concrete cores retrieved from a concrete bridge. Several interesting observations were made. First, the acquired images revealed the formation of several corrosion sites close to each other. Second, the morphology of the corrosion pits was relatively shallow. Finally, only about half of the total 31 corrosion initiation spots were in close proximity to interfacial macroscopic air voids, and > 90% of the more than 160 interfacial macroscopic air voids were free from corrosion. The findings have implications for the mechanistic understanding of corrosion of steel in concrete and suggest that multimodal in-situ imaging is a valuable technique for further related studies. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-024-02337-7.

2.
Environ Sci Technol ; 57(42): 16097-16108, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37822288

ABSTRACT

The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, t1/2, of 2-line ferrihydrite reduces from several months at pH = 2.0, and approximately 15 days at pH = 10.0, to just under 5 h at pH = 14.0. The calculated-first order rate constants of transformation, k, increase exponentially with respect to the pH and follow the progression log10 k = log10 k0 + a·pH3. Simultaneous monitoring of the aqueous Fe(III) concentration via inductively coupled plasma optical emission spectroscopy demonstrates that (i) goethite likely precipitates from solution and (ii) its formation is rate-limited by the comparatively slow redissolution of 2-line ferrihydrite. The analysis presented can be used to estimate the transformation rate of naturally occurring 2-line ferrihydrite in aqueous electrolytes characteristic to mine and radioactive waste tailings as well as the formation of corrosion products in cementitious pore solutions.


Subject(s)
Ferric Compounds , Iron Compounds , Ferric Compounds/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Water , Hydrogen-Ion Concentration , Oxidation-Reduction
3.
Mater Struct ; 56(5): 100, 2023.
Article in English | MEDLINE | ID: mdl-37252036

ABSTRACT

The diffusion potentials can cause significant errors in corrosion-related investigations of reinforced concrete structures (half-cell potential mapping, potentiometric sensors). Therefore, an improved understanding of the diffusion potentials in cement-based materials is needed. This study investigates the permselective behavior and its implication for the arising diffusion potentials. A diffusion cell is used to study the diffusion potentials in hardened cement pastes with imposed NaCl gradients. The cement pastes consist of ordinary Portland cement (OPC) and blast furnace cement (BFC) with water-cement ratios of 0.30-0.70. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used to determine the concentration profiles of Cl, Na, K and Ca in the cement pastes with a high spatial resolution (100 µm). For the BFC pastes, considerable differences in the Cl- and Na+ mobilities are found, indicating their permselective behavior. Despite the permselective behavior, the measured diffusion potentials are small (- 6 to + 3 mV) for all investigated cement pastes due to the high pH levels (13-14) in the pore solutions. However, when using the diffusion cell, the pH differences interfere with the measured diffusion potentials. The interfering pH differences need to be considered for an accurate measurement of the diffusion potentials in cement pastes.

4.
Chemosphere ; 335: 138955, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224978

ABSTRACT

Whilst the oxidation of Fe(II) in aerobic conditions has been studied thoroughly, an in-depth knowhow on the fate or stability of Fe(II) in solutions with near-neutral pH under anaerobic conditions is still lacking. Here, we experimentally investigated the kinetics of Fe(II) oxidation in solutions with pH ranging between ∼5 and 9, under aerobic (when solutions were in equilibrium with atmospheric oxygen) and anaerobic conditions (when the dissolved oxygen concentration was ∼10-10 mol/L), by colorimetric means. Experimental results and thermodynamic considerations presented here, show that Fe(II) oxidation in anaerobic conditions is first-order w.r.t. [Fe(II)], and proceeds with set of parallel reactions involving different hydrolysed and non-hydrolysed Fe(II) and Fe(III) species, similar to that observed in aerobic conditions. However, in the absence of oxygen, the cathodic reaction accompanying the anodic oxidation of Fe(II), is the reduction of H2O (l) releasing H2 (g). Hydrolysed Fe(II) species oxidise much faster than Fe2+ and their concentrations increases with pH, leading to increased Fe(II) oxidation rates. Additionally, we also show the importance of the type of buffer used to study Fe(II) oxidation. Therefore, for the oxidation of Fe(II) in near-neutral solutions, the speciation of Fe(II) and Fe(III), the presence of other anions and the pH of the solution are critical parameters that must be considered. We anticipate that our results and hypothesis will find use in reactive-transport models simulating different processes occurring in anaerobic conditions such as corrosion of the steel in concrete structures, or in nuclear waste repositories.


Subject(s)
Ferric Compounds , Ferrous Compounds , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Anaerobiosis , Hydrogen-Ion Concentration , Iron/chemistry , Oxidation-Reduction , Oxygen/chemistry , Ions , Solutions
5.
J Microsc ; 286(2): 191-197, 2022 May.
Article in English | MEDLINE | ID: mdl-35292994

ABSTRACT

Steel corrosion can cause serious damage to reinforced concrete structures. This study employed multiple techniques, including SEM/BSE, EDX and Raman spectroscopy, to analyse the distribution and mineral composition of corrosion products (rusts) in corroded reinforced cementitious materials under two conditions, namely, chloride-induced corrosion and accelerated corrosion in carbonated mortar. Results showed that corrosion products tend to precipitate in large pore spaces close to the steel bar, such as the bleed water zones and voids. Corrosion products initially grew on the walls of these large pores and then the interior was filled with needle-like products gradually. In carbonated mortar, the length of some corrosion layers matches well the size of the coarse aggregate close to the steel. The main phases that were identified based on Roman spectra are magnetite and maghemite (after samples were exposed to atmosphere). Siderite was observed in carbonated mortars, which is not commonly found under natural conditions.

6.
J Microsc ; 286(2): 141-147, 2022 May.
Article in English | MEDLINE | ID: mdl-35142374

ABSTRACT

The recent interest in 3D printing with concrete has generated great interest on how inhomogeneities arise and affect performance parameters, in particular strength and durability. With respect to durability, of particular interest is how 3D-printed layer interfaces can impact transport of species of interest, such as moisture, chlorides or carbon dioxide in carbonation processes. This is of particular interest considering that the primary use case of 3D-printed concrete has been as a lost formwork for a cast structural concrete, and thus it is of interest to determine the carbonation resistance. This study consists of a preliminary look at the microstructure after accelerated carbonation of a 3D-printed concrete used as a lost formwork. Preferential carbonation is observed in the layer interfaces compared to the bulk of the printed filaments, possibly related to porosity from air voids or a locally high capillary porosity corresponding to the lubrication layer.


The new technology of 3D printing with concrete has been making a lot of headlines recently due to its great potential to make construction safer, cheaper and faster. It also allows us to make buildings and infrastructure objects that are more materially efficient, meaning that they use much less concrete compared to a more standard construction, so they are less environmentally harmful. However, this is all assuming that the printed concrete will perform similar to normal concrete. A lot of attention has been paid to whether the printed concrete is as strong as normal concrete, however not so much attention has been paid to if the printed concrete is as durable as normal concrete. The aim of this study is to make a first look at this, using the microscope. When we speak of concrete durability, we typically mean the protection of the steel reinforcement in the concrete, which acts to take up tensile stresses that may arise. Concrete acts as a protective barrier to this steel from corrosion, but aggressive species can go through this barrier to attack the steel. One of these aggressive species is carbon dioxide, which acts to reduce the pH around the reinforcement and results in its corrosion. Printed concrete, made in a layer-by-layer process, has many interfaces between these layers where the connection is potentially not as dense as in normal concrete. This study shows that these layer interfaces essentially can serve as highways for carbon dioxide to enter the concrete and attack the reinforcement. This means that any new 3D-printed structures need to take this into account, if the printed concrete is expected to serve as any kind of a protective barrier. We caution the reader that this study is purely observational, however, and a more in-depth study where we can actually make predictions about the printed concrete should be carried out.

7.
Int J Mol Sci ; 21(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012924

ABSTRACT

The durability of reinforced concrete structures is closely related to moisture state in cement-based materials. Therefore, it is crucial to develop moisture models that can accurately predict moisture state in the materials. However, many studies reported anomalous moisture transport in cement-based materials that cannot be well simulated by the conventional models. Several reasons have been investigated in the literature, such as the complex pore structure, chemical reactions with water, dimensional changes of the tested specimen, etc. Nevertheless, only a few models are able to capture the anomaly of moisture transport. This study viewed the main moisture transport coefficient-permeability-as a kinetic variable that depends on both the degree of moisture saturation and the contact time. The time-dependence was formulated by the decay (for drying) or growth (for wetting) functions. The saturation-dependence was calculated by the van Genuchten-Mualem (VGM) model. These functions were then implemented into a moisture transport model that was developed in previous studies. The proposed model was validated by experimental data and showed a good agreement for cement pastes that were dried or wetted in the hygroscopic range. Numerical simulation results were also compared with the simplified solutions to a fractional derivative model (FDM) of anomalous diffusion and the empirical Weibull function. We found that the solutions to the FDM cannot provide appropriate results. Weibull function performs as well as the proposed model, but the empirical function lacks physical meanings.


Subject(s)
Algorithms , Construction Materials , Models, Chemical , Water/chemistry , Kinetics , Permeability , Wettability
8.
Nat Mater ; 18(9): 942-947, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31358940

ABSTRACT

Metals embedded in porous media interact electrochemically with the liquid phase contained in the pores. A widespread form of this, adversely affecting the integrity of engineered structures, is corrosion of steel in porous media or in natural environments. While it is well documented that the rate of this electrochemical dissolution process can vary over several orders of magnitude, understanding the underlying mechanisms remains a critical challenge hampering the development of reliable predictive models. Here we study the electrochemical dissolution kinetics of steel in meso-to-macro-porous media, using cement-based materials, wood and artificial soil as model systems. Our results reveal the dual role of the pore structure (that is, the influence on the electrochemical behaviour through transport limitations and an area effect, which is ultimately due to microscopic inhomogeneity of the metal/porous material interface). We rationalize the observations with the theory of capillary condensation and propose a material-independent model to predict the corrosion rate.

9.
Sensors (Basel) ; 18(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30223507

ABSTRACT

Both the free chloride concentration and the pH of the concrete pore solution are highly relevant parameters that control corrosion of the reinforcing steel. In this paper, we present a method to continuously monitor these two parameters in-situ. The approach is based on a recently developed electrode system that consists of several different potentiometric sensors as well as a data interpretation procedure. Instrumented mortar specimens containing different amounts of admixed chlorides were exposed to accelerated carbonation, and changes in free chloride concentration and pH were monitored simultaneously over time. The results revealed the stepwise decrease in pH as well as corresponding increases in free chlorides, resulting from the release of bound chlorides. For a pH drop of about 1 unit (from pH 13.5 down to pH 12.5), the free chloride concentration increased up to 1.5-fold. We continuously quantified the ratio Cl-/OH- that increased steeply with time, and was found to exceed a critical corrosion threshold long before carbonation can be detected with traditional indicator spray testing, even at admixed chloride contents in the order of allowable limits. These results can strongly influence the decision-making in engineering practice and it is expected to significantly improve condition assessments of reinforced concrete structures.

10.
Sci Rep ; 8(1): 7407, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29743576

ABSTRACT

Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

11.
J Vis Exp ; (126)2017 08 31.
Article in English | MEDLINE | ID: mdl-28892023

ABSTRACT

The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established methods used for mechanical testing.


Subject(s)
Chlorides/chemistry , Materials Testing/methods , Steel/chemistry , Corrosion
12.
Sci Adv ; 3(8): e1700751, 2017 08.
Article in English | MEDLINE | ID: mdl-28782038

ABSTRACT

Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation (Ccrit). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that Ccrit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable Ccrit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of Ccrit. It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform Ccrit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...