Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(11): eadd6947, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36930711

ABSTRACT

Future space travel needs ultra-lightweight and robust structural materials that can withstand extreme conditions with multiple entry points to orbit to ensure mission reliability. This is unattainable with current inorganic materials. Ultra-highly stable carbon fiber reinforced polymers (CFRPs) have shown susceptibility to environmental instabilities and electrostatic discharge, thereby limiting the full lightweight potential of CFRP. A more robust and improved CFRP is needed in order to improve space travel and structural engineering further. Here, we address these challenges and present a superlattice nano-barrier-enhanced CFRP with a density of ~3.18 g/cm3 that blends within the mechanical properties of the CFRP, thus becoming part of the composite itself. We demonstrate composites with enhanced radiation resistance coupled with electrical conductivity (3.2 × 10-8 ohm⋅m), while ensuring ultra-dimensionally stable physical properties even after temperature cycles from 77 to 573 K.

2.
ACS Nano ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622047

ABSTRACT

Thermal control is essential to guarantee the optimal performance of most advanced electronic devices or systems. In space, orbital satellites face the issues of high thermal gradients, heating, and different thermal loads mediated by differential illumination from the Sun. Todaýs state-of-the-art thermal control systems provide protection; however, they are bulky and restrict the mass and power budgets for payloads. Here, we develop a lightweight optical superlattice nanobarrier structure to provide a smart thermal control solution. The structure consists of a moisture and outgassing physical barrier (MOB) coupled with atomic oxygen (AO)-UV protection functionality. The nanobarrier exhibits transmission and reflection of light by controlling the optical gap of individual layers to enable high infrared emissivity and variable solar absorptivity (minimum ΔαS = 0.30) across other wavelengths. The multifunctional coating can be applied to heat-sensitive substrates by means of a bespoke room-temperature process. We demonstrate enhanced stability, energy-harvesting capability, and power savings by facilitating the radiation cooling and facility for active self-reconfiguration in orbit. In this way, the reduction of the operating temperature from ∼120 to ∼60 °C on space-qualified and nonmechanically controlled composite structures is also demonstrated.

3.
iScience ; 24(6): 102692, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34195569

ABSTRACT

The endeavors to develop manufacturing methods that can enhance polymer and composite structures in spacecraft have led to much research and innovation over many decades. However, the thermal stability, intrinsic material stress, and anisotropic substrate properties pose significant challenges and inhibit the use of previously proposed solutions under extreme space environment. Here, we overcome these issues by developing a custom-designed, plasma-enhanced cross-linked poly(p-xylylene):diamond-like carbon superlattice material that enables enhanced mechanical coupling with the soft polymeric and composite materials, which in turn can be applied to large 3D engineering structures. The superlattice structure developed forms an integral part with the substrate and results in a space qualifiable carbon-fiber-reinforced polymer featuring 10-20 times greater resistance to cracking without affecting the stiffness of dimensionally stable structures. This innovation paves the way for the next generation of advanced ultra-stable composites for upcoming optical and radar instrument space programs and advanced engineering applications.

5.
ACS Appl Mater Interfaces ; 13(5): 6670-6677, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33523644

ABSTRACT

With the realization of larger and more complex space installations, an increase in the surface area exposed to atomic oxygen (AO) and ultraviolet (UV) effects is expected, making structural integrity of space structures essential for future development. In a low Earth orbit (LEO), the effects of AO and UV degradation can have devastating consequences for polymer and composite structures in satellites and space installations. Composite materials such as carbon fiber-reinforced polymer (CFRP) or polymer materials such as polyetherimide and polystyrene are widely used in satellite construction for various applications including structural components, thermal insulation, and importantly radio frequency (RF) assemblies. In this paper, we present a multilayered material protection solution, a multilayered protection barrier, that mitigates the effects of AO and UV without disrupting the functional performance of tested assemblies. This multilayered protection barrier deposited via a custom-built plasma-enhanced chemical vapor deposition (PECVD) system is designed so as to deposit all necessary layers without breaking vacuum to maximize the adhesion to the surface of the substrate and to ensure no pinhole erosion is present. In the multilayer solution, a moisture and outgassing barrier (MOB) is coupled with an AO and UV capping layer to provide complete protection.

6.
Sci Adv ; 2(2): e1501238, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26933686

ABSTRACT

The ability to engineer a thin two-dimensional surface for light trapping across an ultra-broad spectral range is central for an increasing number of applications including energy, optoelectronics, and spectroscopy. Although broadband light trapping has been obtained in tall structures of carbon nanotubes with millimeter-tall dimensions, obtaining such broadband light-trapping behavior from nanometer-scale absorbers remains elusive. We report a method for trapping the optical field coincident with few-layer decoupled graphene using field localization within a disordered distribution of subwavelength-sized nanotexturing metal particles. We show that the combination of the broadband light-coupling effect from the disordered nanotexture combined with the natural thinness and remarkably high and wavelength-independent absorption of graphene results in an ultrathin (15 nm thin) yet ultra-broadband blackbody absorber, featuring 99% absorption spanning from the mid-infrared to the ultraviolet. We demonstrate the utility of our approach to produce the blackbody absorber on delicate opto-microelectromechanical infrared emitters, using a low-temperature, noncontact fabrication method, which is also large-area compatible. This development may pave a way to new fabrication methodologies for optical devices requiring light management at the nanoscale.

7.
Sci Rep ; 6: 18767, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732851

ABSTRACT

Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices.

8.
Nanotechnology ; 26(48): 485706, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26559931

ABSTRACT

Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga(+) ion implantation in the specific areas of the magnetic material.

9.
ACS Appl Mater Interfaces ; 5(9): 3861-6, 2013 May.
Article in English | MEDLINE | ID: mdl-23586644

ABSTRACT

The synthesis of high-quality nanomaterials depends on the efficiency of the catalyst and the growth temperature. To produce high-quality material, high-growth temperatures (often up to 1000 °C) are regularly required and this can limit possible applications, especially where temperature sensitive substrates or tight thermal budgets are present. In this study, we show that high-quality catalyzed nanomaterial growth at low substrate temperatures is possible by efficient coupling of energy directly into the catalyst particles by an optical method. We demonstrate that using this photothermal-based chemical vapor deposition method that rapid growth (under 4 min, which includes catalyst pretreatment time) of high-density carbon nanotubes can be grown at substrate temperatures as low as 415 °C with proper catalyst heat treatment. The growth process results in nanotubes that are high quality, as judged by a range of structural, Raman, and electrical characterization techniques, and are compatible with the requirements for interconnect technology.

10.
Small ; 7(23): 3317-23, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-21972067

ABSTRACT

A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle.


Subject(s)
Electromagnetic Fields , Metals/chemistry , Nanostructures/chemistry , Colloids , Elastic Modulus , Optics and Photonics , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...