Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Res ; 245: 118044, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157963

ABSTRACT

The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.


Subject(s)
Antioxidants , Millettia , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Millettia/chemistry , Spectroscopy, Fourier Transform Infrared , Acetone , Staphylococcus aureus , Chromatography, High Pressure Liquid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
2.
Biomedicines ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001940

ABSTRACT

Cognitive impairment is anotable complication of type 2 diabetes (T2DM), accompanied by reduced brain-derived neurotrophic factor (BDNF) in the brain and blood. Anti-diabetic drugs reduce hyperglycemia, yet their effect on cognitive improvement is unknown. We aimed to investigate the effect of anti-diabetic drugs regulating BDNF in T2DM through computational and case-control study design. We obtained T2DMproteins viatext-mining to construct a T2DMprotein network. From the T2DMnetwork, the metformin and glimepiride interactomes and their crucial shortest-path-stimulating BDNF were identified. Using qRTPCR, the genes encoding the shortest-path proteins were assessed in four groups (untreated-T2DM, metformin-treated, glimepiride-treated, and healthy controls). Finally, ELISA was used to assess serum BDNF levels to validate drug efficacy. As a result of this investigation, aT2DMnetwork was constructed with 3683 text-mined proteins. Then, the T2DMnetwork was explored to generate a metformin and glimepiride interactome that establishes the critical shortest-path for BDNF stimulation. Metformin stimulates BDNF via APP binding to the PRKAB1 receptor. Whereas, glimepiride increases BDNF by binding to KCNJ11 via AP2M1 and ESR1 proteins. Both drug shortest-path encoding genes differed significantly between the groups. Unlike metformin, BDNF gene and protein expression rise significantly with glimepiride. Overall, glimepiride can effectively increase BDNF, which could benefit T2DM patients with cognitive deterioration.

3.
Mar Drugs ; 21(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37888480

ABSTRACT

Despite significant progress in early detection and treatment, a few aggressive breast cancers still exhibit resistance to therapy. This study aimed to identify a therapeutic target for radioresistant breast cancer (RRbc) through a protein network from breast cancer genes and to evaluate potent phytochemicals against the identified target. Our approach includes the integration of differential expression genes from expression datasets to create a protein network and to use survival analysis to identify the crucial RRbc protein in order to discover a therapeutic target. Next, the phytochemicals sourced from brown algae were screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), molecular dynamics (MD) simulation, MM-GBSA, and quantum mechanics against the identified target. As a result of our protein network investigation, the proto-oncogene c-KIT (KIT) protein was identified as a potent radioresistant breast cancer target. Further, phytochemical screening establishes that nahocol-A1 from brown algae has high binding characteristics (-8.56 kcal/mol) against the KIT protein. Then, quantum chemical analysis of nahocol-A1 provided insights into its electronic properties favorable for protein binding. Also, MD simulation comprehends the conformational stability of the KIT-nahocol-A1 complex. Overall, our findings suggest nahocol-A1 could serve as a promising therapeutic candidate for radioresistant breast cancer.


Subject(s)
Neoplasms , Phaeophyceae , Molecular Docking Simulation , Chromatography, Gas , Molecular Dynamics Simulation
4.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513187

ABSTRACT

The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.


Subject(s)
Anti-Anxiety Agents , Coriandrum , Mental Disorders , Humans , Coriandrum/chemistry , Molecular Docking Simulation , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Mental Disorders/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
5.
Plant Cell Rep ; 42(4): 689-705, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36753041

ABSTRACT

KEY MESSAGE: Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Cell Dedifferentiation/genetics , RNA, Untranslated/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Long Noncoding/genetics , Plants/genetics
6.
3 Biotech ; 11(6): 277, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34040926

ABSTRACT

Neem (Azadirachta indica) is a very popular traditional medicinal plant used since ancient times to treat numerous ailments. MicroRNAs (miRNAs) are highly conserved, non-coding, short RNA molecules that play important regulatory roles in plant development and metabolism. In this study, deploying a high stringent genome-wide computational-based approach and following a set of strict filtering norms a total of 44 potential conserved neem miRNAs belonging to 21 families and their corresponding 48 potential target transcripts were identified. Important targets include Squamosa promoter binding protein-like proteins, NAC, Scarecrow proteins, Auxin response factor, and F-box proteins. A biological network has also been developed to understand the miRNA-mediated gene regulation using the minimum free energy (MFE) values of the miRNA-target interaction. Moreover, six selected miRNAs were reported to be involved in secondary metabolism in other plant species (miR156a, miR156l, miR160, miR164, miR171, miR395) were validated by qPCR and their tissue-specific differential expression pattern was observed in leaves and stem. Except for ain-miR395, all the other miRNAs were found overexpressed in the stem as compared to leaves. To the best of our knowledge, this is the first report of neem miRNAs and we believe the finding of the present study will be useful for the functional genomic study of medicinal plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02839-z.

7.
Front Neurosci ; 15: 631892, 2021.
Article in English | MEDLINE | ID: mdl-33790735

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease with no definite molecular markers for diagnosis. Metal exposure may alter cellular proteins that contribute to PD. Exploring the cross-talk between metal and its binding proteins in PD could reveal a new strategy for PD diagnosis. We performed a meta-analysis from different PD tissue microarray datasets to identify differentially expressed genes (DEGs) common to the blood and brain. Among common DEGs, we extracted 280 metalloprotein-encoding genes to construct protein networks describing the regulation of metalloproteins in the PD blood and brain. From the metalloprotein network, we identified three important functional hubs. Further analysis shows 60S ribosomal protein L6 (RPL6), a novel intermediary molecule connecting the three hubs of the metalloproteins network. Quantitative real-time PCR analysis showed that RPL6 was downregulated in PD peripheral blood mononuclear cell (PBMC) samples. Simultaneously, trace element analysis revealed altered serum zinc and magnesium concentrations in PD samples. The Pearson's correlation analysis shows that serum zinc and magnesium regulate the RPL6 gene expression in PBMC. Thus, metal-regulating RPL6 acts as an intermediary molecule connecting the three hubs that are functionally associated with PD. Overall our study explores the understanding of metal-mediated pathogenesis in PD, which provides a serum metal environment regulating the cellular gene expression that may light toward metal and gene expression-based biomarkers for PD diagnosis.

8.
Curr Pharm Des ; 25(32): 3457-3477, 2019.
Article in English | MEDLINE | ID: mdl-31604414

ABSTRACT

BACKGROUND: Nopal (Opuntia spp.) is by excellence the most utilized cactus in human and animal nutrition. It is also a very noble plant; its main physicochemical, nutritional and nutraceutical characteristics allow the use of nopal in diverse food applications. Special focus has been given over the past decades in the use of Opuntia for the treatment of metabolic syndrome (MetS), which is predominantly related to Diabetes Mellitus. In this sense, the prevalence of MetS is increasing at a worldwide level. This in turn has led to a notorious demand for natural and nutraceutical food sources. METHODS: The objective of this work was to summarize the main contributions in the field of Opuntia spp. research highlighting the potential use of nopal fruits or cladodes in MetS treatment, providing the reader with historical and novel information in this field. Nevertheless, the present work is not a meta-analysis. We included mainly information from recognized scientific databases, such as PubMed, Scopus, Web of Science and Google Scholar. No homeopathic based studies were included since they lack scientific validation. To the best of our knowledge, this is the first review that fairly categorizes the majority of the information in this field into subsections, which can be of interest for the reader, such as the effect of nopal against cardiovascular disease, type 2 diabetes mellitus, and obesity among others. CONCLUSION: Nopal constitutes one of the most studied members of the Cactaceae family; its potential effects on human health have been described since ancient times, mostly through traditional medicine. The present work highlights the importance of this plant in the treatment of MetS related maladies and points out the importance of elucidating new compounds and their validation for the interactions of nutraceutical compounds which could be related to MetS.


Subject(s)
Dietary Supplements , Fruit/chemistry , Metabolic Syndrome/therapy , Opuntia/chemistry , Animals , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Obesity
9.
3 Biotech ; 9(3): 98, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30800609

ABSTRACT

In the present study, a novel transformation protocol for Opuntia ficus-indica was generated by means of particle bombardment. The best conditions obtained were: 900 psi rupture disk pressure, 8 cm microprojectile travel distance, and 4 h of exposition to 0.2 M mannitol. For all experiments, gold particles coated with 1.0 µg/µL of pBI426 plasmid DNA were used. With all these conditions, a 23% of transformation efficiency in terms of regeneration in selection media (100 mg/L kanamycin) was obtained. Interestingly, the presence of both transgenes: nptII and uidA, by means of PCR and RT-PCR assays was detected. The regeneration percentage achieved in terms of stable integration for both genes was 10%. In addition, we also detected adequate amounts of ß-glucuronidase activity by means of the GUS fluorometric assay. The procedure described in the present investigation reveals the feasibility of using nopal for the introduction, expression, and possible production of heterologous proteins.

10.
Molecules ; 23(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445751

ABSTRACT

Galphimia glauca (Cav.) Kuntze is an important endemic plant species, which possesses many medicinal properties and has been used in the Mexican traditional medicine for its sedative, anxiolytic, anticonvulsant, antiasthmatic and antiallergic properties. The therapeutic properties of this plant are mainly due to the presence of diverse bioactive compounds such as flavonoids, triterpenoids, and phenolics. Several triterpenoids and flavonoids compounds have been isolated and identified. Modern studies have demonstrated many biological activities such as anti-inflammatory, antidiarrheal, gastroenteritis, antimalarial and cytotoxic activities. Nevertheless, many studies are restricted to the crude extract, and many bioactive compounds are yet to be identified and validated according to its traditional use. However, its commercial exploitation and use are highly limited due to the non-availability of enough plant material and lack of knowledge about its agronomical practices. Moreover, the misinterpretation and mislabeling of closely related species of the genus Galphimia Cav. as G. glauca or G. gracilis is a common problem for its rigorous scientific study and commercial exploitation. The present review provides comprehensive knowledge based on the available scientific literature. To the best of our knowledge, this is the first review on G. glauca. This comprehensive information will certainly provide a guide for the better understanding and utilization of G. glauca for its scientific and industrial exploitation.


Subject(s)
Galphimia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Biotechnology , Clinical Trials as Topic , Drug Evaluation, Preclinical , Ecosystem , Galphimia/classification , Humans , Mexico , Patents as Topic , Phytochemicals/chemistry , Plant Extracts/therapeutic use , Plants, Medicinal/classification , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...