Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 15: 578922, 2021.
Article in English | MEDLINE | ID: mdl-33584185

ABSTRACT

Glutamate fulfils many vital functions both at a peripheral level and in the central nervous system (CNS). However, hyperammonemia and hepatic failure induce alterations in glutamatergic neurotransmission, which may be the main cause of hepatic encephalopathy (HE), an imbalance which may explain damage to both learning and memory. Cognitive and motor alterations in hyperammonemia may be caused by a deregulation of the glutamate-glutamine cycle, particularly in astrocytes, due to the blocking of the glutamate excitatory amino-acid transporters 1 and 2 (EAAT1, EAAT2). Excess extracellular glutamate triggers mechanisms involving astrocyte-mediated inflammation, including the release of Ca2+-dependent glutamate from astrocytes, the appearance of excitotoxicity, the formation of reactive oxygen species (ROS), and cell damage. Glutamate re-uptake not only prevents excitotoxicity, but also acts as a vital component in synaptic plasticity and function. The present review outlines the evidence of the relationship between hepatic damage, such as that occurring in HE and hyperammonemia, and changes in glutamine synthetase function, which increase glutamate concentrations in the CNS. These conditions produce dysfunction in neuronal communication. The present review also includes data indicating that hyperammonemia is related to the release of a high level of pro-inflammatory factors, such as interleukin-6, by astrocytes. This neuroinflammatory condition alters the function of the membrane receptors, such as N-methyl-D-aspartate (NMDA), (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA, and γ-aminobutyric acid (GABA), thus affecting learning and spatial memory. Data indicates that learning and spatial memory, as well as discriminatory or other information acquisition processes in the CNS, are damaged by the appearance of hyperammonemia and, moreover, are associated with a reduction in the production of cyclic guanosine monophosphate (cGMP). Therefore, increased levels of pharmacologically controlled cGMP may be used as a therapeutic tool for improving learning and memory in patients with HE, hyperammonemia, cerebral oedema, or reduced intellectual capacity.

2.
Neuroscience ; 416: 239-254, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31400487

ABSTRACT

Given their anti-inflammatory properties, cannabinoids have been shown to be neuroprotective agents and to reduce excitotoxicity, through the activation of the Cannabinoid receptor type 1 (CB1r). These properties have led to CB1r being proposed as pharmacological targets for the treatment of various neurodegenerative diseases. Amyloid-ß 25-35 (Aß25-35) induces the expression of inducible nitric oxide synthase (iNOS) and increases nitric oxide (NO●) levels. It has been observed that increased NO● concentrations trigger biochemical pathways that contribute to neuronal death and cognitive damage. This study aimed to evaluate the neuroprotective effect of an acute activation of CB1r on spatial memory and its impact on iNOS protein expression, NO● levels, gliosis and the neurodegenerative process induced by the injection of Aß(25-35) into the CA1 subfield of the hippocampus. ACEA [1 µM/1 µL] and Aß(25-35) [100 µM/1 µL] and their respective vehicle groups were injected into the CA1 subfield of the hippocampus. The animals were tested for spatial learning and memory in the eight-arm radial maze, with the results revealing that the administration of ACEA plus Aß(25-35) improves learning and memory processes, in contrast with the Aß(25-35) group. Moreover, ACEA plus Aß(25-35) prevented both the increase in iNOS protein and NO● levels and the reactive gliosis induced by Aß(25-35). Importantly, neurodegeneration was significantly reduced by the administration of ACEA plus Aß(25-35) in the CA1 subfield of the hippocampus. The data obtained in the present research suggest that the acute early activation of CB1r is crucial for neuroprotection.


Subject(s)
Arachidonic Acids/pharmacology , Memory Disorders/chemically induced , Nerve Degeneration/drug therapy , Receptor, Cannabinoid, CB1/agonists , Spatial Memory/drug effects , Amyloid beta-Peptides/pharmacology , Animals , Calcium-Binding Proteins/metabolism , Glial Fibrillary Acidic Protein/metabolism , Gliosis/drug therapy , Gliosis/metabolism , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory Disorders/prevention & control , Microfilament Proteins/metabolism , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Peptide Fragments/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...