Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 50(2): 533-537, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30637628

ABSTRACT

To examine the growth of Candida norvegensis (strain Levazoot 15), four experiments were conducted with different sources of energy, nitrogen, vitamins, and microminerals. Optical density was used as an indirect measure of strain growth in a fully randomized factorial design, in which principal factor A was the source of energy, nitrogen, vitamins, or microminerals and principal factor B was the measurement time point (0, 20, or 40 h). The results showed that the yeast strain used glucose (primarily sucrose and lactose) as the energy source and tryptone as the nitrogen source. The addition of B-complex vitamins or microminerals was not necessary for strain growth. It is concluded that the strain Levazoot 15 preferentially utilizes glucose as a source of energy, tryptone as a source of nitrogen and manganese as a mineral source, and that no vitamin source was necessary for growth.


Subject(s)
Candida/growth & development , Candida/metabolism , Glucose/metabolism , Manganese/metabolism , Peptones/metabolism , Energy Metabolism/physiology , Minerals/metabolism , Nitrogen/metabolism , Vitamin B 12/analogs & derivatives , Vitamin B 12/metabolism , Vitamins/metabolism
2.
Braz. j. microbiol ; 47(4): 889-895, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828185

ABSTRACT

Abstract Solid-state fermentation can be used to produce feeds for ruminants, which can provide an enriched population of yeasts to improve ruminal fermentation. Fermentation of apple bagasse was performed to obtain a yeast-rich product, with the objective of isolating, identifying, and characterizing yeast strains and testing their capability to enhance in vitro ruminal fermentation of fibrous feeds. Yeasts were isolated from apple bagasse fermented under in vitro conditions, using rumen liquor obtained from cannulated cows and alfalfa as a fibrous substrate. A total of 16 new yeast strains were isolated and identified by biochemical and molecular methods. The strains were designated Levazot, followed by the isolate number. Their fermentative capacity was assessed using an in vitro gas production method. Strain Levazot 15 (Candida norvegensis) showed the greatest increase in gas production (p < 0.05) compared with the yeast-free control and positively affected in vitro ruminal fermentation parameters of alfalfa and oat straw. Based on these results, it was concluded that the Levazot 15 yeast strain could be potentially used as an additive for ruminants consuming high-fiber diets. However, further studies of effects of these additives on rumen digestion, metabolism, and productive performance of ruminants are required.


Subject(s)
Animals , Yeasts/isolation & purification , Yeasts/classification , Cellulose , Malus , Food Additives , Animal Feed/microbiology , Phylogeny , Yeasts/genetics , Yeasts/metabolism , Ruminants , Fermentation
3.
Braz J Microbiol ; 47(4): 889-895, 2016.
Article in English | MEDLINE | ID: mdl-27520528

ABSTRACT

Solid-state fermentation can be used to produce feeds for ruminants, which can provide an enriched population of yeasts to improve ruminal fermentation. Fermentation of apple bagasse was performed to obtain a yeast-rich product, with the objective of isolating, identifying, and characterizing yeast strains and testing their capability to enhance in vitro ruminal fermentation of fibrous feeds. Yeasts were isolated from apple bagasse fermented under in vitro conditions, using rumen liquor obtained from cannulated cows and alfalfa as a fibrous substrate. A total of 16 new yeast strains were isolated and identified by biochemical and molecular methods. The strains were designated Levazot, followed by the isolate number. Their fermentative capacity was assessed using an in vitro gas production method. Strain Levazot 15 (Candida norvegensis) showed the greatest increase in gas production (p<0.05) compared with the yeast-free control and positively affected in vitro ruminal fermentation parameters of alfalfa and oat straw. Based on these results, it was concluded that the Levazot 15 yeast strain could be potentially used as an additive for ruminants consuming high-fiber diets. However, further studies of effects of these additives on rumen digestion, metabolism, and productive performance of ruminants are required.


Subject(s)
Animal Feed/microbiology , Cellulose , Food Additives , Malus , Yeasts/classification , Yeasts/isolation & purification , Animals , Fermentation , Phylogeny , Ruminants , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...