Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 11(6): 2642-2653, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324904

ABSTRACT

This study demonstrated the therapeutic potentials of Cucumeropsis mannii seed oil (CMSO) capable of alleviating BPA-induced dyslipidemia and adipokine dysfunction. In this study, we evaluated the effects of CMSO on adipokine dysfunctions and dyslipidemia in bisphenol-A (BPA)-induced male Wistar rats. Six-week-old 36 albino rats of 100-200 g weight were assigned randomly to six groups, which received varied doses of BPA and/or CMSO. The administration of BPA and CMSO was done at the same time for 42 days by oral intubation. The adipokine levels and lipid profile were measured in adipose tissue and plasma using standard methods. BPA induced significant (p < .05) increases in triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices in adipose tissue and plasma, as well as a decrease in adiponectin and HDL-C levels in Group II animals. BPA administration significantly (p < .05) elevated Leptin levels and reduced adiponectin levels. BPA plus CMSO reduced triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices while increasing adiponectin levels and HDL-C in adipose tissue and plasma (p < .05). The results showed that BPA exposure increased adipose tissue as well as serum levels of the atherogenic index, triglycerides, cholesterol, coronary risk index, LDL-C, leptin, and body weight with decreased adiponectin levels and HDL-C. Treatment with CMSO reduced the toxicities caused by BPA in rats by modulating the body weight, adiponectin/leptin levels, and lipid profiles in serum and adipose tissue. This study has shown that CMSO ameliorates BPA-induced dyslipidemia and adipokine dysfunctions. We suggest for further clinical trial to establish the clinical applications.

2.
Life Sci ; 259: 118268, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32800830

ABSTRACT

AIM: Cadmium is a persistent ubiquitous environmental toxicant that elicits several biological defects on delicate body organs. Growing evidence suggests that cadmium (Cd) may perturb signaling pathways to induce oxidative pancreatitis. Thus, we explored whether hesperidin, a flavonone, could mitigate Cd-induced oxidative stress-mediated inflammation and pancreatitis in Wistar rats. MAIN METHODS: Forty (40) rats randomly assigned to 5 groups (n = 8) were administered normal saline or hesperidin (Hsp) followed by Cd intoxication for 28 days. KEY FINDINGS: Cadmium accumulated in the pancreas of rats, and markedly decreased insulin, pancreatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and glutathione (GSH) level. Cadmium considerably increased malondialdehyde (MDA), serum lipase and amylase activities. Cadmium induced pancreatic pro-inflammation via over-expression of inducible nitric oxide synthase (iNOS), nuclear factor-ĸB (NF-κB), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), along with histopathological alterations. Hesperidin prominently decreased serum amylase and lipase activities, and markedly increased insulin level, pancreatic antioxidant defense mechanism, whereas iNOS, NF-κB, IL-6 and TNF-α levels significantly decreased. Changes in histology confirmed our biochemical findings. SIGNIFICANCE: Our findings suggest that Cd induced pancreatitis via pro-inflammation and oxidative stress; Hsp, thus, protects against Cd-induced pancreatitis via attenuation of oxidative stress and proinflammatory responses in pancreas.


Subject(s)
Hesperidin/pharmacology , Insulin-Secreting Cells/drug effects , Pancreatitis/drug therapy , Animals , Antioxidants/pharmacology , Cadmium/toxicity , Catalase/metabolism , Glutathione/metabolism , Hesperidin/metabolism , Inflammation/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin Secretion/physiology , Male , Malondialdehyde/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Pancreatitis/metabolism , Protective Agents , Rats , Rats, Wistar , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...