Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(3): e59469, 2013.
Article in English | MEDLINE | ID: mdl-23469289

ABSTRACT

African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.


Subject(s)
Conservation of Natural Resources , Crime/economics , Elephants/physiology , Africa, Central , Animals , Conservation of Natural Resources/trends , Crime/statistics & numerical data , Ecosystem , Humans , Population Density , Socioeconomic Factors , Trees
2.
Faraday Discuss ; (116): 269-79; discussion 335-51, 2000.
Article in English | MEDLINE | ID: mdl-11197484

ABSTRACT

Application of antigen-antibody technology allows the attachment to an electrode surface of an enzyme monolayer structure to which both the enzyme and the mediator are bound. As illustrated with the example of glucose oxidase and a ferrocene mediator, the enzyme preserves its full activity in such structures, which may be easily reproduced. In spite of their fixation to the structure, the mobility of the ferrocene heads is sufficient to ensure that its transport to the enzyme prosthetic group is not rate determining. The reaction is rather controlled by the prior formation of a complex between the ferrocenium ion and the flavin required for electron transfer to occur. The efficiency of this step is affected by steric hindrance and the various observations made with free-moving and attached ferrocene-ended poly(ethylene glycol) chains may be rationalized by the interplay of factors controlling their distribution and shape. Analyzing the dynamics of this system, in comparison with previous systems, was thus an occasion to shed further light on the recognition phenomenon. The enzyme monolayer integrated system is a good starting point for the step-by-step construction of spatially ordered multilayered assemblies with strong catalytic efficiencies. Fast responding systems are expected both in terms of electron transport and electron transfer between the mediator and the enzyme. The spatial order resulting from the step-by-step construction should allow a much more precise analysis of electron transport and electron transfer than in conventional assemblies of redox centers. Mastering both the construction and the functioning of such systems should help the design of more complex systems, integrating additional functionalities electrically controlled by means of their electron transport/electron transfer connection to the electrode surface.


Subject(s)
Oxidoreductases/chemistry , Antigen-Antibody Complex/chemistry , Electrochemistry , Enzymes, Immobilized , Membranes, Artificial , Solutions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...