Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38416335

ABSTRACT

Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, ß-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski's rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ - 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.

2.
Biol Trace Elem Res ; 202(4): 1628-1643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37468716

ABSTRACT

Drinking water polluted by heavy metals has the potential to expose delicate biological systems to a range of health issues. This study embraced the health risks that may arise from subchronic exposure of thirty-four male Wistar rats to nickel (Ni)-cadmium (Cd)-contaminated water. It was done by using the Box-Behnken design (BBD) with three treatment factors (Ni and Cd doses at 50-150 mg/L and exposure at 14-21-28 days) at a single alpha level, resulting in seventeen experimental combinations. Responses such as serum creatinine (CREA) level, blood urea nitrogen (BUN) level, BUN/CREA ratio (BCR), aspartate and alanine aminotransferases (AST and ALT) activities, and the De Ritis ratio (DRR), as well as malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) activities, were evaluated. The results revealed that these pollutants jointly caused hepatocellular damage by raising AST and ALT activities and renal dysfunction by increasing CREA and BUN levels in Wistar rats' sera (p < 0.05). These outcomes were further supported by BCR and DRR values beyond 1. In rats' hepatocytes and renal tissues, synergistic interactions of these metals resulted in higher MDA levels and significant impairments of CAT and SOD activities (p < 0.05). In order to accurately forecast the effects on the responses, the study generated seven acceptable regression models (p < 0.05) with r-squared values of > 80% at no discernible lack of fit (p > 0.05). The findings hereby demonstrated that Wistar rats exposed to these pollutants at varied doses had increased risks of developing liver cirrhosis and azotemia marked by metabolic stress.


Subject(s)
Azotemia , Drinking Water , Environmental Pollutants , Metals, Heavy , Rats , Male , Animals , Cadmium/pharmacology , Rats, Wistar , Nickel/toxicity , Nickel/metabolism , Azotemia/metabolism , Azotemia/pathology , Metals, Heavy/metabolism , Antioxidants/metabolism , Liver Cirrhosis/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism , Environmental Pollutants/metabolism , Oxidative Stress , Liver/metabolism , Kidney/metabolism
3.
World J Microbiol Biotechnol ; 40(1): 20, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996724

ABSTRACT

To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolism , Fermentation , Lysine
4.
World J Microbiol Biotechnol ; 39(10): 259, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493900

ABSTRACT

Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.


Subject(s)
Manihot , Manihot/chemistry , Fermentation , Vegetables , Nutritive Value
5.
World J Microbiol Biotechnol ; 39(2): 62, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36577912

ABSTRACT

The biochemical parameters of solid-state fermented peeled and unpeeled cassava roots (Manihot esculenta Crantz) and their application in broiler feed formulations were investigated. Fermentation occurred at room temperature for 72 h (pH 3-9). The samples utilized for five (5) broiler starter feeds were labeled: control, unfermented unpeeled cassava (UUC), unfermented peeled cassava (UPC), fermented unpeeled cassava (FUC), and fermented peeled cassava (FPC). Formulations were made by substituting fermented/non-fermented cassava roots at pH 7 for maize (w/w%). Fermentation-induced changes included increased soluble and total protein concentrations (69.3 and 334.5 mg/g) and (9.6 and 10.8%), respectively, in cultures prepared with peeled and unpeeled cassava at pH 7 compared to the control (p < 0.05), and a reduction (p < 0.01) in cyanide concentration from 44.4 to 78.7 mg/kg in the control to 8.5 and 13.7 mg/kg in fermented cassava at pH 7. Birds fed FUC and FPC meal (0.6 and 0.5 kg) gained significantly more weight (p < 0.05) than those fed the control (0.3 kg). The biochemical parameters aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea levels in broiler serum did not differ significantly (p > 0.05) for birds fed with fermented peeled and unpeeled cassava. Conversely, serum albumin and calcium levels were significantly lower (p < 0.05) for birds fed with the control feed compared to birds fed with fermented feeds. The results imply that fermented peeled and unpeeled cassava roots could be a safe and nutritionally beneficial replacement for maize in broiler diet.


Subject(s)
Manihot , Animals , Manihot/chemistry , Manihot/metabolism , Chickens , Diet/veterinary , Cyanides/metabolism , Fermentation , Vegetables , Zea mays , Animal Feed/analysis
6.
Biophys Chem ; 274: 106607, 2021 07.
Article in English | MEDLINE | ID: mdl-33957576

ABSTRACT

Obesity is a global health problem characterized by excessive fat deposition in adipose tissues and can be managed by targeting pancreatic lipase (PL) activity. In the present study, we investigated the in vitro antioxidant and anti-obesity potentials of methanolic leaf extract of Justicia carnea(MEJC) using lipase inhibition kinetics model. In silico evaluations of MEJC bioactive compounds as potential drug-like agents and inhibitors of PL were also investigated using SwissADME prediction tool, semi-empirical quantum mechanics(SQM), molecular electrostatic potential(MEP) and molecular docking analysis. Gas chromatography-mass spectrometry(GC-MS) revealed presence of campesterol, stigmasterol, beta-amyrin etc. MEJC scavenged reactive species and inhibited PL activity via a mixed inhibition pattern (Ki = 107.69 µg/mL; Kii = 398.00 µg/mL) with IC50 > orlistat's IC50. Molecular docking of GC-MS identified compounds with porcine PL showed compounds 8,10,12 and 14 having high PL-binding affinity and similar binding pose with orlistat. Hydrophobic interactions and van der Waals forces were predominantly involved in the ligands' interactions with some key catalytic site amino acid residues (Ser-153,His-264). Compounds 10,12,13 and 14 indicated high drug-likeness, bioavailability, electronegativity, ELUMO-EHOMO energy gaps and MEP. Our findings show that MEJC is a rich natural source of antioxidant and anti-obesity agents which could be optimized for development of new anti-obesity drugs.


Subject(s)
Anti-Obesity Agents/pharmacology , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Obesity/drug therapy , Plant Extracts/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Justicia/chemistry , Kinetics , Lipase/metabolism , Molecular Docking Simulation , Obesity/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Quantum Theory
7.
Biophys Chem ; 269: 106529, 2021 02.
Article in English | MEDLINE | ID: mdl-33360111

ABSTRACT

The present study investigated the antioxidant and invitro antidiabetic capacities of Justicia carnea aqueous leaf extract (JCAE) using α-amylase inhibition model. α-Amylase binding-interaction with JCAE was also investigated using fluorescence spectroscopy and molecular docking. Phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated presence of bioactive compounds. Phenolic (132 mg GAE/g) and flavonoid contents (31.08 mg CE/g) were high. JCAE exhibited high antioxidant capacity and effectively inhibited α-amylase activity (IC50, 671.43 ± 1.88 µg/mL), though lesser than acarbose effect (IC50, 108.91 ± 0.61 µg/mL). α-Amylase intrinsic fluorescence was quenched in the presence of JCAE. Ultraviolet-visible and FT-IR spectroscopies affirmed mild changes in α-amylase conformation. Synchronous fluorescence analysis indicated alterations in the microenvironments of tryptophan residues near α-amylase active site. Molecular docking affirmed non-polar interactions of compounds 6 and 7 in JCAE with Asp-197 and Trp-58 residues of α-amylase, respectively. Overall, JCAE indicated potential to prevent postprandial hyperglycemia by slowing down carbohydrate hydrolysis.


Subject(s)
Justicia/chemistry , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Phytochemicals/metabolism , Protein Conformation , Spectroscopy, Fourier Transform Infrared , alpha-Amylases/chemistry
8.
Biochem Biophys Rep ; 24: 100837, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33251341

ABSTRACT

Postprandial hyperglycemia has orchestrated untimely death among diabetic patients over the decades and regulation of α-amylase activity is now becoming a promising management option for type 2 diabetes. The present study investigated the binding interactions of three structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase to ascertain the affinity of the ligands for α-amylase using spectroscopic and molecular docking methods. The ligands were characterized using 1H and 31P NMR spectroscopy and CHN analysis. Diselenoimidodiphosphinate ligand (DY300), dithioimidodiphosphinate ligand (DY301), and thioselenoimidodiphosphinate ligand (DY302) quenched the intrinsic fluorescence intensity of α-amylase via a static quenching mechanism with bimolecular quenching constant (Kq) values in the order of x1011 M-1s-1, indicating formation of enzyme-ligand complexes. A binding stoichiometry of n≈1 was observed for α-amylase, with high binding constants (Ka). α-Amylase inhibition was as follow: Acarbose > DY301>DY300>DY302. Values of thermodynamic parameters obtained at temperatures investigated (298, 304 and 310 K) revealed spontaneous complex formation (ΔG<0) between the ligands and α-amylase; the main driving forces were hydrophobic interactions (with DY300, DY301, except DY302). UV-visible spectroscopy and Förster resonance energy transfer (FRET) affirmed change in enzyme conformation and binding occurrence. Molecular docking revealed ligands interaction with α-amylase via some key catalytic site amino acid residues (Asp197, Glu233 and Asp300). DY301 perhaps showed highest α-amylase inhibition (IC50, 268.11 ±â€¯0.74 µM) due to its moderately high affinity and composition of two sulphide bonds unlike the others. This study might provide theoretical basis for development of novel α-amylase inhibitors from dichalcogenoimidodiphosphinate ligands for management of postprandial hyperglycemia.

9.
Biochem Biophys Rep ; 14: 35-42, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29872732

ABSTRACT

In this investigation, a gene (CDF_Amyl) encoding extracellular α-amylase in Aspergillus niger strain CSA35 associated with cassava spoilage was amplified using specific primers and characterized in silico. The gene had a partial nucleotide sequence of 968 bp and encoded a protein of 222 aa residues with a molecular weight and isoelectric point of 25.13 kDa and 4.17, respectively. Its catalytic site was located in the active site domain. BLASTp analysis showed that the protein primary sequence of the α-amylase gene had 98% and 99% homologies with the α-amylase of A. niger and A. oryzae RIB40, respectively. The gene is more closely related to α-amylase genes from fungi than to bacterial, plant, or animal α-amylase genes. Restriction mapping of the gene showed it can be digested with restriction enzymes like NcoI, PstI, SmaI, and BcLI among others but not with EcoRI and EcoRV. Its protein product had a hydrophobicity score of - 0.43 but no transmembrane helix. The CDF_Amyl protein was subcellularly localized in the secretory pathway, an indication of its release into extracellular space after secretion. Also, the 3D structure of the CDF-Amyl protein was barrel-shaped with domains characteristic of α-amylases. The encoded α-amylase Vmax is 6.90 U/mg protein and Km is 6.70 mg/ml. It was concluded that the unique characteristics of the CDF_Amyl gene and its deduced protein could find applications in biotechnological, food and pharmaceutical industries where cloning and further modification of this gene would be required for product development and improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...