Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 99: 103734, 2022 01.
Article in English | MEDLINE | ID: mdl-35058027

ABSTRACT

Sufficient primary stability through interference fit is required for bone ingrowth and subsequent long-term fixation of cementless knee replacement implants, and can be evaluated in experimental testing. In this study, primary stability of a novel posterior-stabilized (PS) femoral component (Attune PS) and a contemporary PS component (Triathlon PS) were analyzed, and compared to previous outcomes of cruciate-retaining (CR) implants. Potential bone ingrowth was evaluated by measuring micromotions over the implant-bone interface in six cadaveric femur pairs under two loading conditions using digital image correlation, for a paired comparison of the PS implants. Push-off forces required to achieve implant removal under high-flexion were determined as a measure of implant fixation. Achieved interference fit was determined by reconstructing the implant positions through use of separate implant and resected bone geometries. Lower overall micromotions and a higher average push-off force were measured in the Attune PS implant, indicating increased initial fixation compared to the Triathlon PS design. Interference fit was significantly higher for the Attune PS and was related to lower gait micromotions in Triathlon and overall PS groups. Based on reported clinical results and the comparison with available CR implant results, both PS implants are expected to provide sufficient initial clinical stability.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Biomechanical Phenomena , Femur/surgery , Gait , Humans , Knee Joint/surgery , Prosthesis Design , Range of Motion, Articular
2.
J Biomed Mater Res B Appl Biomater ; 110(4): 776-786, 2022 04.
Article in English | MEDLINE | ID: mdl-34661334

ABSTRACT

Periprosthetic bone loss is an important factor in tibial implant failure mechanisms in total knee arthroplasty (TKA). The purpose of this study was to validate computational postoperative bone response using longitudinal clinical DEXA densities. Computational remodeling outcome over a population was obtained by incorporating the strain-adaptive remodeling theory in finite element (FE) simulations of 26 different tibiae. Physiological loading conditions were applied, and bone mineral density (BMD) in three different regions of interest (ROIs) was considered over a postoperative time of 15 years. BMD outcome was compared directly to previously reported clinical BMD data of a comparable TKA cohort. Similar trends between computational and clinical bone remodeling over time were observed in the two proximal ROIs, with most rapid bone loss taking place in the initial months after TKA and BMD starting to level in the following years. The extent of absolute proximal BMD change was underestimated in the FE population compared with the clinical subject group, which might be the result of significantly higher initial clinical baseline BMD values. Large differences in remodeling response were found in the distal ROI, in which resorption was measured clinically, but a large BMD increase was predicted by the FE models. Multiple computational limitations, related to the FE mesh, loading conditions, and strain-adaptive algorithm, likely contributed to the extensive local bone formation. Further research incorporating subject-specific comparisons using follow-up CT scans and more extensive physiological knee loading is recommended to optimize bone remodeling more distal to the tibial baseplate.


Subject(s)
Arthroplasty, Replacement, Knee , Absorptiometry, Photon , Bone Density , Bone Remodeling , Humans , Tibia/surgery
3.
J Mech Behav Biomed Mater ; 111: 104014, 2020 11.
Article in English | MEDLINE | ID: mdl-32810653

ABSTRACT

Periprosthetic bone loss is an important factor in tibial implant failure mechanisms in total knee arthroplasty (TKA). The purpose of this study was to determine the effect of postoperative knee alignment and population variation on tibial bone remodeling, to assess long-term stability of a knee replacement. Strain-adaptive finite element (FE) remodeling simulations were conducted following kinematic and mechanical alignment of a cemented fixed-bearing implant after TKA; kinematic TKA alignment was assumed to be more consistent with the preoperative varus alignment, while mechanical alignment was defined according to the neutral mechanical axes. To account for the effect of tibial variation on the outcome, bone remodeling was considered over a population of 47 subjects. Bone mineral density (BMD) was analyzed over three regions of interest (ROIs); medial, lateral and distal. The two proximal ROIs showed an average decrease in BMD in both alignments after two years. Greater overall proximal bone loss was found in the mechanical postoperative knees in comparison with kinematically aligned implants. Bone resorption was also concentrated more medially in mechanical alignment: increased medial ROI bone loss was found in every subject compared to kinematic alignment; while in the lateral ROI, higher regional two-year BMD was found in 39 of the 47 cases (82.9%) following mechanical alignment. Two distinct remodeling pathways were identified over both alignments, based on the variance in density change over the population; displaying predominant bone apposition either around the distal tip of the keel or at the lateral cortex. This study demonstrates that correction of native varus alignment to neutral mechanical alignment leads to an increase in medial bone resorption. Large variation between specimens illustrates the benefit of population-based FE analyses over single model studies.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Biomechanical Phenomena , Bone Remodeling , Humans , Knee Joint/surgery , Tibia/diagnostic imaging , Tibia/surgery
4.
PLoS One ; 14(5): e0217046, 2019.
Article in English | MEDLINE | ID: mdl-31112589

ABSTRACT

INTRODUCTION: Measuring coronal plane gait kinematics of the pelvis and trunk during rehabilitation of participants with a lower extremity amputation is important to detect asymmetries in gait which are hypothesised as associated with secondary complaints. The aim of this study was to test the reproducibility and discriminant validity of a three-dimensional (3-D; inertial measurement units) and a two-dimensional (2-D; video-based) system. METHODS: We tested the test-retest and inter-rater reproducibility of both systems and the 2-D system, respectively, in participants with a lower extremity amputation (group 1) and healthy subjects (group 2). The discriminant validity was determined with a within-group comparison for the 3-D system and with a between-group comparison for both systems. RESULTS: Both system showed to be test-retest reliable, both in group 1 (2-D system: ICC3.1agreement 0.52-0.83; 3-D system: ICC3.1agreement 0.81-0.95) and in group 2 (3-D system: ICC3.1agreement 0.33-0.92; 2-D system: ICC3.1agreement 0.54-0.95). The 2-D system was also inter-rater reliable (group 1: ICC2.1agreement 0.80-0.92; group 2: ICC2.1agreement 0.39-0.90). The within-group comparison of the 3-D system revealed a statistically significant asymmetry of 0.4°-0.5° in group 1 and no statistically significant asymmetry in group 2. The between-group comparison revealed that the maximum amplitude towards the residual limb (MARL) in the low back (3-D system) and the (residual) limb-trunk angle (2-D system) were significantly larger with a mean difference of 1.2° and 6.4°, respectively, than the maximum amplitude of healthy subjects. However, these average differences were smaller than the smallest detectable change (SDC) of group 1 for both the MARL (SDCagreement: 1.5°) and the residual limb-trunk angle (SDCagreement: 6.7°-7.6°). CONCLUSION: The 3-D and 2-D systems tested in this study were not sensitive enough to detect real differences within and between participants with a lower extremity amputation and healthy subjects although promising reproducibility parameters for some of the outcome measures.


Subject(s)
Amputation, Surgical , Gait , Lower Extremity/surgery , Adult , Aged , Biomechanical Phenomena , Computer Simulation , Discriminant Analysis , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Musculoskeletal System , Observer Variation , Reproducibility of Results
5.
J Biomech ; 72: 134-143, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29573792

ABSTRACT

Skin-mounted marker based motion capture systems are widely used in measuring the movement of human joints. Kinematic measurements associated with skin-mounted markers are subject to soft tissue artifacts (STA), since the markers follow skin movement, thus generating errors when used to represent motions of underlying bone segments. We present a novel ultrasound tracking system that is capable of directly measuring tibial and femoral bone surfaces during dynamic motions, and subsequently measuring six-degree-of-freedom (6-DOF) tibiofemoral kinematics. The aim of this study is to quantitatively compare the accuracy of tibiofemoral kinematics estimated by the ultrasound tracking system and by a conventional skin-mounted marker based motion capture system in a cadaveric experimental scenario. Two typical tibiofemoral joint models (spherical and hinge models) were used to derive relevant kinematic outcomes. Intra-cortical bone pins equipped with optical markers were inserted in the tibial and femoral bones to serve as a reference to provide ground truth kinematics. The ultrasound tracking system resulted in lower kinematic errors than the skin-mounted markers (the ultrasound tracking system: maximum root-mean-square (RMS) error 3.44° for rotations and 4.88 mm for translations, skin-mounted markers with the spherical joint model: 6.32° and 6.26 mm, the hinge model: 6.38° and 6.52 mm). Our proposed ultrasound tracking system has the potential of measuring direct bone kinematics, thereby mitigating the influence and propagation of STA. Consequently, this technique could be considered as an alternative method for measuring 6-DOF tibiofemoral kinematics, which may be adopted in gait analysis and clinical practice.


Subject(s)
Femur/diagnostic imaging , Femur/physiology , Knee Joint/diagnostic imaging , Knee Joint/physiology , Tibia/diagnostic imaging , Tibia/physiology , Artifacts , Biomechanical Phenomena , Humans , Male , Movement , Range of Motion, Articular , Skin , Ultrasonography
6.
J Biomech ; 63: 135-143, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28882332

ABSTRACT

Stress shielding-related bone loss occurs after total hip arthroplasty because the stiffness of metallic implants differs from that of the host femur. Although reducing stem stiffness can ameliorate the bone resorption, it increases stress at the bone-implant interface and can inhibit fixation. To overcome this complication, a novel cementless stem with a gradient in Young's modulus was developed using Ti-33.6Nb-4Sn (TNS) alloy. Local heat treatment applied at the neck region for increasing its strength resulted in a gradual decrease in Young's modulus from the proximal to the distal end, from 82.1 to 51.0GPa as calculated by a heat transfer simulation. The Young's modulus gradient did not induce the excessive interface stress which may cause the surface debonding. The main purpose of this study was to evaluate bone remodeling with the TNS stem using a strain-adaptive bone remodeling simulation based on finite element analysis. Our predictions showed that, for the TNS stem, bone reduction in the calcar region (Gruen zone 7) would be 13.6% at 2years, 29.0% at 5years, and 45.8% at 10years postoperatively. At 10 years, the bone mineral density for the TNS stem would be 42.6% higher than that for the similar Ti-6Al-4V alloy stem. The stress-strength ratio would be lower for the TNS stem than for the Ti-6Al-4V stem. These results suggest that although proximal bone loss cannot be eliminated completely, the TNS stem with a Young's modulus gradient may have bone-preserving effects and sufficient stem strength, without the excessive interface stress.


Subject(s)
Hip Prosthesis , Titanium/chemistry , Alloys , Arthroplasty, Replacement, Hip , Biomechanical Phenomena , Bone Remodeling , Bone-Implant Interface/physiopathology , Computer Simulation , Elastic Modulus , Femur Neck/physiopathology , Finite Element Analysis , Humans , Materials Testing , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...