Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Lancet Reg Health Southeast Asia ; 27: 100431, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38957222

ABSTRACT

Telemedicine is a promising solution to the challenges of delivering equitable and quality primary healthcare, especially in LMICs. This review evaluated peer-reviewed literature on telehealth interventions in Indian primary care published from Jan 1, 2011 to Dec 31, 2021, from PubMed, Scopus, TRIP, Google Scholar, Indian Kanoon, and Cochrane database The majority of Indian studies focus on key health issues like maternal and child health, mental health, diabetes, infectious diseases, and hypertension, mainly through patient education, monitoring, and diagnostics. Yet, there's a lack of research on telemedicine's cost-effectiveness, communication among providers, and the role of leadership in its quality and accessibility. The current research has gaps, including small sample sizes and inconsistent methodologies, which hamper the evaluation of telemedicine's effectiveness. India's varied healthcare landscape, technological limitations, and social factors further challenge telemedicine's adoption. Despite regulatory efforts, issues like the digital divide and data privacy persist. Addressing these challenges with a context-aware, technologically driven approach is crucial for enhancing healthcare through telemedicine in India.

2.
Article in English | MEDLINE | ID: mdl-38957358

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.

4.
Article in English | MEDLINE | ID: mdl-38860860

ABSTRACT

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV) induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated blocking dynamin decreased the infectivity of RRV whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV while late endosome inhibition had no effect. Following infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human BA patients experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that utilize Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10, and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.

5.
PLoS One ; 19(6): e0304481, 2024.
Article in English | MEDLINE | ID: mdl-38875235

ABSTRACT

Pro-inflammatory changes contribute to multiple neuropsychiatric illnesses. Understanding how these changes are involved in illnesses and identifying strategies to alter inflammatory responses offer paths to potentially novel treatments. We previously found that acute pro-inflammatory stimulation with high (µg/ml) lipopolysaccharide (LPS) for 10-15 min dampens long-term potentiation (LTP) in the hippocampus and impairs learning. Effects of LPS involved non-canonical inflammasome signaling but were independent of toll-like receptor 4 (TLR4), a known LPS receptor. Low (ng/ml) LPS also inhibits LTP when administered for 2-4 h, and here we report that this LPS exposure requires TLR4. We also found that effects of low LPS on LTP involve the oxysterol, 25-hydroxycholesterol, akin to high LPS. Effects of high LPS on LTP are blocked by inhibiting synthesis of 5α-reduced neurosteroids, indicating that neurosteroids mediate LTP inhibition. 5α-Neurosteroids also have anti-inflammatory effects, and we found that exogenous allopregnanolone (AlloP), a key 5α-reduced steroid, prevented effects of low but not high LPS on LTP. We also found that activation of TLR2, TLR3 and TLR7 inhibited LTP and that AlloP prevented the effects of TLR2 and TLR7, but not TLR3. The enantiomer of AlloP, a steroid that has anti-inflammatory actions but low activity at GABAA receptors, prevented LTP inhibition by TLR2, TLR3 and TLR7. In vivo, both AlloP enantiomers prevented LPS-induced learning defects. These studies indicate that neurosteroids play complex roles in network effects of acute neuroinflammation and have potential importance for development of AlloP analogues as therapeutic agents.


Subject(s)
Hippocampus , Lipopolysaccharides , Long-Term Potentiation , Neurosteroids , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Lipopolysaccharides/pharmacology , Long-Term Potentiation/drug effects , Male , Neurosteroids/metabolism , Toll-Like Receptors/metabolism , Learning/drug effects , Mice , Neuronal Plasticity/drug effects , Toll-Like Receptor 4/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Hydroxycholesterols/pharmacology , Hydroxycholesterols/metabolism , Pregnanolone/pharmacology , Pregnanolone/metabolism
6.
Prog Mol Biol Transl Sci ; 205: 171-211, 2024.
Article in English | MEDLINE | ID: mdl-38789178

ABSTRACT

The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.


Subject(s)
Artificial Intelligence , Drug Repositioning , Machine Learning , Drug Repositioning/methods , Humans , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , COVID-19
7.
Am J Physiol Cell Physiol ; 326(6): C1659-C1668, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646784

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-ß (TGFß) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFß-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-ß-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.


Subject(s)
Extracellular Matrix Proteins , Fibroblasts , Idiopathic Pulmonary Fibrosis , Lung , Neuropilin-1 , Semaphorins , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Middle Aged , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Lung/pathology , Membrane Glycoproteins , Mice, Inbred C57BL , Neuropilin-1/metabolism , Neuropilin-1/genetics , Semaphorins/metabolism , Semaphorins/genetics , Transforming Growth Factor beta/metabolism
8.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38442267

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.


Subject(s)
Steroid Hydroxylases , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Disease Models, Animal , Neuroinflammatory Diseases , Steroid Hydroxylases/metabolism , Tauopathies/metabolism , Tauopathies/pathology
9.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328164

ABSTRACT

Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.

10.
Radiology ; 310(1): e222509, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289219

ABSTRACT

HISTORY: A 9-month-old preterm male infant born at 33 weeks gestation presented with a 2-month history of developmental decline. The parents reported that over the past several months, they noted regression of milestones, where the infant stopped smiling, crying, expressing himself, or making eye contact. The parents also reported that the infant had multiple seizures during which he would wake up stiff and stare into space for 10-20 seconds while his lips would become blue. The parents were referred to a neurologist, where physical examination was notable for hypotonia. Electroencephalography (EEG) revealed frequent bilateral parietal epileptiform discharges. The patient was subsequently started on lacosamide. The patient's medical history was notable for abnormally low citrulline levels at birth, with negative results of urea cycle disorder testing at the time, along with left inguinal hernia repair performed 3 months ago. More recent laboratory analysis had shown persistently elevated serum lactate and alanine levels. There was no history of travel, recent infection, or vaccine administration. MRI of the brain with spectroscopy was performed for further evaluation.


Subject(s)
Leigh Disease , Infant, Newborn , Infant , Humans , Male , Leigh Disease/diagnostic imaging , Brain , Electroencephalography , Infant, Premature , Lacosamide
11.
Neuron ; 112(7): 1100-1109.e5, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38266643

ABSTRACT

The Apolipoprotein E gene (APOE) is of great interest due to its role as a risk factor for late-onset Alzheimer's disease. ApoE is secreted by astrocytes in the central nervous system in high-density lipoprotein (HDL)-like lipoproteins. Structural models of lipidated ApoE of high resolution could aid in a mechanistic understanding of how ApoE functions in health and disease. Using monoclonal Fab and F(ab')2 fragments, we characterize the structure of lipidated ApoE on astrocyte-secreted lipoproteins. Our results provide support for the "double-belt" model of ApoE in nascent discoidal HDL-like lipoproteins, where two ApoE proteins wrap around the nanodisc in an antiparallel conformation. We further show that lipidated, recombinant ApoE accurately models astrocyte-secreted ApoE lipoproteins. Cryogenic electron microscopy of recombinant lipidated ApoE further supports ApoE adopting antiparallel dimers in nascent discoidal lipoproteins.


Subject(s)
Apolipoproteins E , Astrocytes , Lipoproteins , Astrocytes/metabolism , Apolipoproteins E/genetics , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Central Nervous System/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E3/metabolism
12.
Neuron ; 112(3): 384-403.e8, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37995685

ABSTRACT

Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Tauopathies/drug therapy , Tauopathies/genetics , Cholesterol , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice, Transgenic
13.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37739089

ABSTRACT

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Bromodomain Containing Proteins , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Gemcitabine , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Smad2 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662218

ABSTRACT

Background: Port wine birthmark (PWB) is a congenital vascular malformation resulting from developmentally defective endothelial cells (ECs). Developing clinically relevant disease models for PWB studies is currently an unmet need. Objective: Our study aims to generate PWB-derived induced pluripotent stem cells (iPSCs) and iPSC-derived ECs that preserve disease-related phenotypes. Methods: PWB iPSCs were generated by reprogramming lesional dermal fibroblasts and differentiated into ECs. RNA-seq was performed to identify differentially expressed genes (DEGs) and enriched pathways. The functional phenotypes of iPSC-derived ECs were characterized by capillary-like structure (CLS) formation in vitro and Geltrex plug-in assay in vivo . Results: Human PWB and control iPSC lines were generated through reprogramming of dermal fibroblasts by introducing the "Yamanaka factors" (Oct3/4, Sox2, Klf4, c-Myc) into them; the iPSCs were successfully differentiated into ECs. These iPSCs and their derived ECs were validated by expression of a series of stem cell and EC biomarkers, respectively. PWB iPSC-derived ECs showed impaired CLS in vitro with larger perimeters and thicker branches as compared to control iPSC-derived ECs. In the plug-in assay, perfused human vasculature formed by PWB iPSC- derived ECs showed bigger perimeters and greater densities than those formed by control iPSC- derived ECs in severe combined immune deficient (SCID) mice. The transcriptome analysis showed that dysregulated pathways of stem cell differentiation, Hippo, Wnt, and focal adhesion persisted through differentiation of PWB iPSCs to ECs. Functional enrichment analysis showed that Hippo and Wnt pathway-related PWB DEGs are enriched for vasculature development, tube morphology, endothelium development, and EC differentiation. Further, members of the zinc finger (ZNF) gene family were overrepresented among the DEGs in PWB iPSCs. ZNF DEGs confer significant functions in transcriptional regulation, chromatin remodeling, protein ubiquitination, and retinoic acid receptor signaling. Furthermore, NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were dysregulated in PWB ECs as readouts of impaired differentiation. Conclusions: PWB iPSC-derived ECs render a novel and clinically-relevant disease model by retaining pathological phenotypes. Our data demonstrate multiple pathways, such as Hippo and Wnt, NF-kappa B, TNF, MAPK, and cholesterol metabolism, are dysregulated, which may contribute to the development of differentiation-defective ECs in PWB. Bulleted statements: What is already known about this topic?: Port Wine Birthmark (PWB) is a congenital vascular malformation with an incidence rate of 0.1 - 0.3 % per live births.PWB results from developmental defects in the dermal vasculature; PWB endothelial cells (ECs) have differentiational impairments.Pulse dye laser (PDL) is currently the preferred treatment for PWB; unfortunately, the efficacy of PDL treatment of PWB has not improved over the past three decades.What does this study add?: Induced pluripotent stem cells (iPSCs) were generated from PWB skin fibroblasts and differentiated into ECs.PWB ECs recapitulated their pathological phenotypes such as forming enlarged blood vessels in vitro and in vivo.Hippo and Wnt pathways were dysregulated in PWB iPSCs and ECs.Zinc-finger family genes were overrepresented among the differentially expressed genes in PWB iPSCs.Dysregulated NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were enriched in PWB ECs.What is the translational message?: Targeting Hippo and Wnt pathways and Zinc-finger family genes could restore the physiological differentiation of ECs.Targeting NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways could mitigate the pathological progression of PWB.These mechanisms may lead to the development of paradigm-shifting therapeutic interventions for PWB.

16.
Metabolites ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37755263

ABSTRACT

Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring in 1-3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites were separated by ultra-performance liquid chromatography and screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs, among which nine were downregulated-including sphingosine-and 13 were upregulated, including glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant phenotypes in some PWB vasculatures.

17.
Radiology ; 308(3): e222508, 2023 09.
Article in English | MEDLINE | ID: mdl-37750778

ABSTRACT

HISTORY: A 9-month-old preterm male infant born at 33 weeks gestation presented with a 2-month history of developmental decline. The parents reported that over the past several months, they noted regression of milestones, where the infant stopped smiling, crying, expressing himself, or making eye contact. The parents also reported that the infant had multiple seizures during which he would wake up stiff and stare into space for 10-20 seconds while his lips would become blue. The parents were referred to a neurologist, where physical examination was notable for hypotonia. Electroencephalography (EEG) revealed frequent bilateral parietal epileptiform discharges. The patient was subsequently started on lacosamide. The patient's medical history was notable for abnormally low citrulline levels at birth, with negative results of urea cycle disorder testing at the time, along with left inguinal hernia repair performed 3 months ago. More recent laboratory analysis had shown persistently elevated serum lactate and alanine levels. There was no history of travel, recent infection, or vaccine administration. MRI of the brain with spectroscopy was performed for further evaluation (Figs 1-6).


Subject(s)
Brain , Electroencephalography , Infant , Infant, Newborn , Humans , Male , Magnetic Resonance Imaging , Physical Examination
18.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503303

ABSTRACT

Port Wine Birthmark (PWB) is a congenital vascular malformation in the skin, occurring in 1-3 per 1,000 live births. We recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, which we aimed to explore in this study. Metabolites were separated by ultra-performance liquid chromatography and were screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant analysis, multivariate and univariate analysis were used to identify differential metabolites (DMs). KEGG analysis was used for the enrichment of metabolic pathways. A total of 339 metabolites were identified. There were 22 DMs confirmed with 9 downregulated DMs including sphingosine and 13 upregulated DMs including glutathione in PWB iPSCs as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key factors associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skins. Our data demonstrate that there are perturbations in sphingolipid and cellular redox homeostasis in the PWB vasculature, which may facilitate cell survival and pathological progression. Our data imply that upregulation of glutathione may contribute to laser-resistant phenotypes in the PWB vasculature.

19.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37261910

ABSTRACT

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , RNA, Long Noncoding , Animals , Mice , Colitis, Ulcerative/genetics , Crohn Disease/genetics , RNA, Long Noncoding/genetics , Celiac Disease/genetics , Transcriptome , Prospective Studies
20.
J Neurochem ; 165(5): 682-700, 2023 06.
Article in English | MEDLINE | ID: mdl-37129420

ABSTRACT

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.


Subject(s)
Protein Processing, Post-Translational , Signal Transduction , Mice , Animals , Disease Models, Animal , Sirolimus , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...