Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Microdevices ; 25(2): 10, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36913137

ABSTRACT

The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19/diagnosis , Drug Delivery Systems , Pharmaceutical Preparations , COVID-19 Testing
2.
Vaccine ; 40(16): 2409-2419, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35305824

ABSTRACT

Breast cancer was ranked first in global cancer incidence in 2020, and HER2 overexpression in breast cancer accounts for 20-30% of breast cancer patients. Current therapeutic strategies increase the survival rate, but resistance to them occurs frequently, and there is an urgent need to develop novel treatments such as DNA vaccines which can induce a specific and long-lasting immune response against HER2 antigens. To enhance the immunogenicity of DNA vaccines, dendritic cells (DCs) can be targeted using multi-epitope proteins that provide accurate immune focusing. For this purpose, we generated a DNA vaccine encoding a fusion protein composed of 1) in silico discovered antigenic epitopes of human and rat HER2 proteins (MeHer2) and 2) a single-chain antibody fragment (ScFv) specific for the DC-restricted antigen-uptake receptor DEC205 (ScFvDEC). The xenogeneic multi-epitope DNA vaccine (pMeHer2) encodes three only T-cell epitopes, two only B-cell epitopes, and two T and B cell epitopes, and pScFvDEC-MeHer2 vaccine additionally encodes ScFvDEC introduced at the N terminus of the MeHer2. Then, mouse groups were immunized with pScFvDEC-MeHer2, pMeHer2, pScFvDEC, pEmpty, and PBS to determine the elicited immune response. pScFvDEC-MeHer2 vaccinated mice showed a strong IgG response (P < 0.0001) and pScFvDEC-MeHer2 induced a significant IgG2a increase (P < 0.01). The percentages of both IFN-γ secreting CD4 and CD8 T cells were higher in mice immunized with pScFvDEC-MeHer2 compared with the pMeHer2. pScFvDEC-MeHer2 and pMeHer2 secreted significantly higher levels of extracellular IFN-γ compared with to control groups (P < 0.0001). In addition, the IFN-γ level of the pScFvDEC-MeHer2 vaccine group was approximately two times higher than the pMeHer2 group (P < 0.0001). Overall, this study identified the pScFvDECMeHer2 construct as a potential DNA vaccine candidate, supporting further studies to be conducted on HER2+ animal models.


Subject(s)
Breast Neoplasms , Vaccines, DNA , Animals , Breast Neoplasms/prevention & control , Dendritic Cells , Epitopes, T-Lymphocyte/genetics , Female , Humans , Mice , Rats , Receptor, ErbB-2/genetics
3.
Biotechnol Bioeng ; 118(12): 4771-4785, 2021 12.
Article in English | MEDLINE | ID: mdl-34559409

ABSTRACT

Diamagnetic levitation is an emerging technology for remote manipulation of cells in cell and tissue level applications. Low-cost magnetic levitation configurations using permanent magnets are commonly composed of a culture chamber physically sandwiched between two block magnets that limit working volume and applicability. This work describes a single ring magnet-based magnetic levitation system to eliminate physical limitations for biofabrication. Developed configuration utilizes sample culture volume for construct size manipulation and long-term maintenance. Furthermore, our configuration enables convenient transfer of liquid or solid phases during the levitation. Before biofabrication, we first calibrated/ the platform for levitation with polymeric beads, considering the single cell density range of viable cells. By taking advantage of magnetic focusing and cellular self-assembly, millimeter-sized 3D structures were formed and maintained in the system allowing easy and on-site intervention in cell culture with an open operational space. We demonstrated that the levitation protocol could be adapted for levitation of various cell types (i.e., stem cell, adipocyte and cancer cell) representing cells of different densities by modifying the paramagnetic ion concentration that could be also reduced by manipulating the density of the medium. This technique allowed the manipulation and merging of separately formed 3D biological units, as well as the hybrid biofabrication with biopolymers. In conclusion, we believe that this platform will serve as an important tool in broad fields such as bottom-up tissue engineering, drug discovery and developmental biology.


Subject(s)
Cell Culture Techniques, Three Dimensional , Magnets , Tissue Engineering , Animals , Cell Culture Techniques, Three Dimensional/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Line , Equipment Design , Humans , Mice , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Tissue Engineering/instrumentation , Tissue Engineering/methods
4.
ACS Sens ; 6(6): 2191-2201, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34124887

ABSTRACT

In clinical practice, a variety of diagnostic applications require the identification of target cells. Density has been used as a physical marker to distinguish cell populations since metabolic activities could alter the cell densities. Magnetic levitation offers great promise for separating cells at the single cell level within heterogeneous populations with respect to cell densities. Traditional magnetic levitation platforms need bulky and precise optical microscopes to visualize levitated cells. Moreover, the evaluation process of cell densities is cumbersome, which also requires trained personnel for operation. In this work, we introduce a device (HologLev) as a fusion of the magnetic levitation principle and lensless digital inline holographic microscopy (LDIHM). LDIHM provides ease of use by getting rid of bulky and expensive optics. By placing an imaging sensor just beneath the microcapillary channel without any lenses, recorded holograms are processed for determining cell densities through a fully automated digital image processing scheme. The device costs less than $100 and has a compact design that can fit into a pocket. We perform viability tests on the device by levitating three different cell lines (MDA-MB-231, U937, D1 ORL UVA) and comparing them against their dead correspondents. We also tested the differentiation of mouse osteoblastic (7F2) cells by monitoring characteristic variations in their density. Last, the response of MDA-MB-231 cancer cells to a chemotherapy drug was demonstrated in our platform. HologLev provides cost-effective, label-free, fully automated cell analysis in a compact design that could be highly desirable for laboratory and point-of-care testing applications.


Subject(s)
Holography , Microscopy , Animals , Image Processing, Computer-Assisted , Magnetic Phenomena , Magnetics , Mice
5.
Biotechnol Bioeng ; 118(3): 1127-1140, 2021 03.
Article in English | MEDLINE | ID: mdl-33205833

ABSTRACT

Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Cell Differentiation , Magnetic Fields , Tissue Engineering , A549 Cells , Adipocytes/cytology , Humans , Tissue Scaffolds
6.
Adv Exp Med Biol ; 1298: 105-132, 2020.
Article in English | MEDLINE | ID: mdl-32424490

ABSTRACT

Challenging environment of space causes several pivotal alterations in living systems, especially due to microgravity. The possibility of simulating microgravity by ground-based systems provides research opportunities that may lead to the understanding of in vitro biological effects of microgravity by eliminating the challenges inherent to spaceflight experiments. Stem cells are one of the most prominent cell types, due to their self-renewal and differentiation capabilities. Research on stem cells under simulated microgravity has generated many important findings, enlightening the impact of microgravity on molecular and cellular processes of stem cells with varying potencies. Simulation techniques including clinostat, random positioning machine, rotating wall vessel and magnetic levitation-based systems have improved our knowledge on the effects of microgravity on morphology, migration, proliferation and differentiation of stem cells. Clarification of the mechanisms underlying such changes offers exciting potential for various applications such as identification of putative therapeutic targets to modulate stem cell function and stem cell based regenerative medicine.


Subject(s)
Stem Cells , Weightlessness , Cell Culture Techniques , Cell Differentiation , Weightlessness Simulation
7.
Methods Mol Biol ; 2125: 15-25, 2020.
Article in English | MEDLINE | ID: mdl-31020635

ABSTRACT

Magnetic levitation methodology enables density-based separation of microparticles/cells and sustains cell culture in different media. Levitation process can be accomplished via negative magnetophoresis (diamagnetophoresis), where the applied magnetic force compensates gravitational acceleration and the density of the diamagnetic object (e.g., cell) determines its levitation height. Here we describe a portable, sensitive, and cost-effective technology that uses the principles of magnetic levitation to measure single cell density and cell culture under desired conditions.


Subject(s)
Cell Culture Techniques/methods , Densitometry , Magnetics , Mesenchymal Stem Cells/cytology , Single-Cell Analysis/methods , Weightlessness , Animals , Calibration , Cell Count , Cells, Cultured , Image Processing, Computer-Assisted , Mice , Microfluidics
8.
Mol Biol Rep ; 47(1): 97-109, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31583566

ABSTRACT

Breast cancer is one of the most common cancer types among women in which early tumor invasion leads to metastases and death. EpCAM (epithelial cellular adhesion molecule) and HER2 (human epidermal growth factor receptor 2) are two main circulating tumor cell (CTC) subsets in HER2+ breast cancer patients. In this regard, the main aim of this study is to develop and characterize a three-dimensional (3D) breast cancer tumor model composed of CTC subsets to evaluate new therapeutic strategies and drugs. For this reason, EpCAM(+) and HER2(+) sub-populations were isolated from different cell lines to establish 3D tumor model that mimics in situ (in vivo) more closely than two-dimensional (2D) models. EpCAM(+)/HER2(+) cells had a high proliferation rate and low tendency to attach to the surface in comparison with parental MDA-MB-453 cells as CTC subsets. Aggressive breast cancer subpopulations cultured in 3D porous chitosan scaffold had enhanced cell-cell and cell-matrix interactions compared to 2D cultured cells and these 3D models showed more aggressive morphology and behavior, expressed higher levels of pluripotency marker genes, Nanog, Sox2 and Oct4. For the verification of the 3D model, the effects of doxorubicin which is a chemotherapeutic agent used in breast cancer treatment were examined and increased drug resistance was determined in 3D cultures. The 3D tumor model comprising EpCAM(+)/HER2(+) CTC subsets developed in this study has a promising potential to be used for investigation of an aggressive CTC microenvironment in vitro that mimics in vivo characteristics to test new drug candidates against CTCs.


Subject(s)
Breast Neoplasms/pathology , Models, Biological , Neoplastic Cells, Circulating/pathology , Tissue Culture Techniques/methods , Tissue Scaffolds , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor/instrumentation , Drug Screening Assays, Antitumor/methods , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Female , Humans , MCF-7 Cells , Neoplasm Invasiveness , Neoplastic Cells, Circulating/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tissue Scaffolds/chemistry , Tumor Microenvironment/genetics
9.
Analyst ; 144(9): 2942-2953, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30939180

ABSTRACT

Adipocyte hypertrophy and hyperplasia are important parameters in describing abnormalities in adipogenesis that are concomitant to diseases such as obesity, diabetes, anorexia nervosa and osteoporosis. Therefore, technical developments in the detection of adipocytes become an important driving factor in adipogenesis research. Current techniques such as optical microscopy and flow cytometry are available in detection and examination of adipocytes, driving cell- and molecular-based research of adipogenesis. Even though microscopy techniques are common and straightforward, they are restricted in terms of manipulation and separation of the cells. Flow cytometry is an alternative, but mature adipocytes are fragile and cannot withstand the flow process. Other separation methods usually require labeling of the cells or usage of microfluidic platforms that utilize fluids with different densities. Magnetic levitation is a novel label-free technology with the principle of movement of cells towards the lower magnetic field in a paramagnetic medium depending on their individual densities. In this study, we used a magnetic levitation device for density-based single cell detection of differentiated adipogenic cells in heterogeneous populations. Results showed that the magnetic levitation platform was sensitive to changes in the lipid content of mesenchymal stem cells committed to adipogenesis and it could be successfully used to detect the adipogenic differentiation of the cells.


Subject(s)
Adipocytes/cytology , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , Adipogenesis/physiology , Animals , Cells, Cultured , Lab-On-A-Chip Devices , Magnetic Phenomena , Magnets , Mice , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation
10.
Sci Rep ; 8(1): 7239, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740095

ABSTRACT

Magnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.

11.
Article in English | MEDLINE | ID: mdl-30619842

ABSTRACT

Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.

SELECTION OF CITATIONS
SEARCH DETAIL
...