Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 13(7): 822-830, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35923717

ABSTRACT

NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.

2.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457079

ABSTRACT

The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.


Subject(s)
Dentate Gyrus , Neurons , Dentate Gyrus/metabolism , Hippocampus/metabolism , Humans , Neurogenesis/genetics , Neuroglia , Neurons/metabolism
3.
Neuroscience ; 375: 49-61, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29438801

ABSTRACT

Selective vulnerability or resilience to mood disorders is related to individual differences or personality. In the present study forced swim test (FST) was used as a tool for division of male rats according to their immobility behavior. The animals were subjected to a chronic unpredictable mild stress (CUS). Depressive-like behavior and modifications in brain neurotrophin system of were examined after CUS exposure. The low immobile (LI) and high immobile (HI) rats demonstrated elusive differences in expression of BDNF ExVI mRNA and TrkA mRNA which was higher in the hippocampus and frontal cortex, respectively, of HI rats as compared to LI animals. Exposure to CUS resulted in development of depressive-like phenotype and increased anxiety in both subgroups; however, immobility in FST specifically decreased in the initially HI animals. In hippocampus of stressed LI rats, the contents of total BDNF mRNA decreased. In hippocampus of stressed HI rats, the content of TrkA mRNA increased whereas in frontal cortex, the content of BDNF exon I mRNA decreased in both LI and HI rats. The levels of BDNF ExIX and ExI as well TrkB mRNAs were higher in the hippocampus of HI rats as compared to LI rats. In general, the response of hippocampus to CUS was much more expressed as compared to frontal cortex. Thus, initially different stress coping strategies of rats in the FST (HI, LI) were associated with the development of similar behavioral phenotypes after chronic unpredictable stress; however, these phenotypes were associated with different alterations in neurotrophin systems of the brain.


Subject(s)
Brain/metabolism , Depressive Disorder/etiology , Depressive Disorder/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism , Animals , Anxiety/etiology , Anxiety/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Gene Expression Regulation , Male , Nerve Growth Factor/metabolism , Nerve Tissue Proteins , RNA, Messenger/metabolism , Random Allocation , Rats, Wistar , Receptor, trkA/metabolism , Receptor, trkB/metabolism , Receptors, Growth Factor , Receptors, Nerve Growth Factor/metabolism , Swimming
4.
Restor Neurol Neurosci ; 35(6): 571-581, 2017.
Article in English | MEDLINE | ID: mdl-29172008

ABSTRACT

BACKGROUND: Aging is associated with some cognitive decline and enhanced risk of development of neurodegenerative diseases. It is assumed that altered metabolism and functions of neurotrophin systems may underlie these age-related functional and structural modifications. CerebrolysinTM (CBL) is a neuropeptide mixture with neurotrophic effects, which is widely used for the treatment of stroke and traumatic brain injury patients. It is also evident that CBL has an overall beneficial effect and a favorable benefit-risk ratio in patients with dementia. However, the effects of CBL on cognition and brain neurotrophin system in normal aging remain obscure. OBJECTIVE: The aim of the present study was to examine the age-related modifications of endogenous neurotrophin systems in the brain of male Wistar rats and the effects of CBL on learning and memory as well as the levels neurotrophins and their receptors. METHODS: Old (23-24 months) and young (2-3 months) male Wistar rats were used for the study. A half of animals were subjected to CBL course (2.5 ml/kg, 20 i.p. injections). Behavior of rats was studied using the open field test and simple water maze training. The contents of NGF and BDNF were studied using enzyme-linked immunosorbent assay; the expression of neurotrophin receptors was estimated by Western-blot analysis. RESULTS: CBL treatment did not affect general status, age-related weight changes, general locomotor activity as well as general brain histology. In a water maze task, a minor effect of CBL was observed in old rats at the start of training and no effect on memory retention was found. Aging induced a decrease in neurotrophin receptors TrkA, TrkB, and p75NTR in the neocortex. CBL counteracted effects of aging on neocortical TrkA and p75NTR receptors and decreased expression of proNGF without influencing overall NGF levels. BDNF system was not significantly affected by CBL. CONCLUSION: The pro-neuroplastic "antiaging" effects of CBL in the neocortex of old animals were generally related to the NGF rather than the BDNF system.


Subject(s)
Aging/drug effects , Amino Acids/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain/drug effects , Nerve Growth Factor/metabolism , Neuroprotective Agents/pharmacology , Age Factors , Animals , Body Weight/drug effects , Exploratory Behavior/drug effects , Gene Expression Regulation/drug effects , Male , Maze Learning/drug effects , Memory, Long-Term/drug effects , Rats , Rats, Wistar , Receptor, trkA/metabolism , Receptor, trkB/metabolism , Time Factors
5.
Cell Mol Neurobiol ; 37(7): 1227-1241, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28012021

ABSTRACT

Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910-11916, 2006; Vargas et al. in J Neurosci 34:2191-2202, 2014, Vargas et al. in Exp Neurol 264:14-25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/ß-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, ß-catenin, and phGSK-3ß levels. A gain-of-function study revealed not only an increase in PSD-95, ß-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3ß level and enhanced GSK-3ß kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/ß-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.


Subject(s)
Lentivirus/physiology , Long-Term Potentiation/physiology , Wnt Signaling Pathway/physiology , beta Catenin/physiology , Animals , HEK293 Cells , Hippocampus/physiology , Humans , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...