Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Nephrol ; 25(1): 120, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570752

ABSTRACT

BACKGROUND: Chronic Kidney Disease of unknown cause (CKDu) a disease of exclusion, and remains unexplained in various parts of the world, including India. Previous studies have reported mixed findings about the role of heavy metals or agrochemicals in CKDu. These studies compared CKDu with healthy controls but lacked subjects with CKD as controls. The purpose of this study was to test the hypothesis whether heavy metals, i.e. Arsenic (As), Cadmium (Cd), Lead (Pb), and Chromium (Cr) are associated with CKDu, in central India. METHODS: The study was conducted in a case-control manner at a tertiary care hospital. CKDu cases (n = 60) were compared with CKD (n = 62) and healthy subjects (n = 54). Blood and urine levels of As, Cd, Pb, and Cr were measured by Inductively Coupled Plasma- Optical Emission Spectrometry. Pesticide use, painkillers, smoking, and alcohol addiction were also evaluated. The median blood and urine metal levels were compared among the groups by the Kruskal-Wallis rank sum test. RESULTS: CKDu had significantly higher pesticide and surface water usage as a source of drinking water. Blood As levels (median, IQR) were significantly higher in CKDu 91.97 (1.3-132.7) µg/L compared to CKD 4.5 (0.0-58.8) µg/L and healthy subjects 39.01 (4.8-67.4) µg/L (p < 0.001) On multinominal regression age and sex adjusted blood As was independently associated with CKDu[ OR 1.013 (95%CI 1.003-1.024) P < .05].Blood and urinary Cd, Pb, and Cr were higher in CKD compared to CKDu (p > .05). Urinary Cd, Pb and Cr were undetectable in healthy subjects and were significantly higher in CKDu and CKD compared to healthy subjects (P = < 0.001). There was a significant correlation of Cd, Pb and Cr in blood and urine with each other in CKDu and CKD subjects as compared to healthy subjects. Surface water use also associated with CKDu [OR 3.178 (95%CI 1.029-9.818) p < .05). CONCLUSION: The study showed an independent association of age and sex adjusted blood As with CKDu in this Indian cohort. Subjects with renal dysfunction (CKDu and CKD) were found to have significantly higher metal burden of Pb, Cd, As, and Cr as compared to healthy controls. CKDu subjects had significantly higher pesticide and surface water usage, which may be the source of differential As exposure in these subjects.


Subject(s)
Arsenic , Drinking Water , Metals, Heavy , Pesticides , Renal Insufficiency, Chronic , Humans , Cadmium/analysis , Case-Control Studies , Lead , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Arsenic/analysis , Chromium
2.
Biomedicines ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001940

ABSTRACT

Cognitive impairment is anotable complication of type 2 diabetes (T2DM), accompanied by reduced brain-derived neurotrophic factor (BDNF) in the brain and blood. Anti-diabetic drugs reduce hyperglycemia, yet their effect on cognitive improvement is unknown. We aimed to investigate the effect of anti-diabetic drugs regulating BDNF in T2DM through computational and case-control study design. We obtained T2DMproteins viatext-mining to construct a T2DMprotein network. From the T2DMnetwork, the metformin and glimepiride interactomes and their crucial shortest-path-stimulating BDNF were identified. Using qRTPCR, the genes encoding the shortest-path proteins were assessed in four groups (untreated-T2DM, metformin-treated, glimepiride-treated, and healthy controls). Finally, ELISA was used to assess serum BDNF levels to validate drug efficacy. As a result of this investigation, aT2DMnetwork was constructed with 3683 text-mined proteins. Then, the T2DMnetwork was explored to generate a metformin and glimepiride interactome that establishes the critical shortest-path for BDNF stimulation. Metformin stimulates BDNF via APP binding to the PRKAB1 receptor. Whereas, glimepiride increases BDNF by binding to KCNJ11 via AP2M1 and ESR1 proteins. Both drug shortest-path encoding genes differed significantly between the groups. Unlike metformin, BDNF gene and protein expression rise significantly with glimepiride. Overall, glimepiride can effectively increase BDNF, which could benefit T2DM patients with cognitive deterioration.

3.
Brain Sci ; 13(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38002511

ABSTRACT

Mitochondrial dysfunction is well-established in Parkinson's disease (PD); however, its dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic reticulum (ER) through a computational approach by constructing an organelle protein network to extract functional clusters presenting the crucial PD protein connecting organelles. Then, we assessed the influence of anti-parkinsonism drugs (n = 35) on the crucial protein through molecular docking and molecular dynamic simulation and further validated its gene expression in PD participants under, istradefylline (n = 25) and amantadine (n = 25) treatment. Based on our investigation, D-aspartate oxidase (DDO )protein was found to be the critical that connects both mitochondria and the ER. Further, molecular docking showed that istradefylline has a high affinity (-9.073 kcal/mol) against DDO protein, which may disrupt mitochondrial-ER connectivity. While amantadine (-4.53 kcal/mol) shows negligible effects against DDO that contribute to conformational changes in drug binding, Successively, DDO gene expression was downregulated in istradefylline-treated PD participants, which elucidated the likelihood of an istradefylline off-target mechanism. Overall, our findings illuminate the off-target effects of anti-parkinsonism medications on DDO protein, enabling the recommendation of off-target-free PD treatments.

4.
Brain Sci ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37508933

ABSTRACT

Pesticides kill neurons, but the mechanism leading to selective dopaminergic loss in Parkinson's disease (PD) is unknown. Understanding the pesticide's effect on dopaminergic neurons (DA) can help to screen and treat PD. The critical uptake of pesticides by the membrane receptors at DA is hypothesized to activate a signaling cascade and accelerate degeneration. Using MPTP as a reference, we demonstrate the mechanisms of eleven crucial pesticides through molecular docking, protein networks, regulatory pathways, and prioritization of key pesticide-regulating proteins. Participants were recruited and grouped into control and PD based on clinical characteristics as well as pesticide traces in their blood plasma. Then, qPCR was used to measure pesticide-associated gene expression in peripheral blood mononuclear cells between groups. As a result of molecular docking, all eleven pesticides and the MPTP showed high binding efficiency against 274 membrane receptor proteins of DA. Further, the protein interaction networks showed activation of multiple signaling cascades through these receptors. Subsequent analysis revealed 31 biological pathways shared by all 11pesticides and MPTP that were overrepresented by 46 crucial proteins. Among these, CTNNB1, NDUFS6, and CAV1 were prioritized to show a significant change in gene expression in pesticide-exposed PD which guides toward therapy.

5.
Biochem Genet ; 61(4): 1548-1566, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36696070

ABSTRACT

Global rise in the prevalence of endemic chronic kidney disease of unknown etiology (CKDu) possess major health issues. The prevalence of CKDu is also rising in the Indian population. Besides environmental factors, genetic factors play an important role in the predisposition to CKDu. In the present study, we have analyzed the association of single nucleotide polymorphisms (SNPs) in three genes with the susceptibility to CKDu. This was a case-control study with a total of 180 adult subjects (CKD = 60, CKDu = 60, Healthy = 60) from central India. We performed KASP genotyping assay to determine the allele frequency of SNP genotypes. We used the odds ratio (OR) to assess the association of individual SNPs, rs34970857 of KCNA10, rs6066043 of SLC13A3, and rs2910164 of miR-146a with CKDu and CKD susceptibility. In the case of rs34970857 of the KCNA10 gene, we noted a significantly increased OR for CKDu versus healthy control (Dominant model; CKDu versus control, CT + CC versus TT, OR = 3.96, p = 0.004). In the recessive and homozygous model, we observed significantly increased OR for rs6066043 of SLC13A3 gene, CKDu versus healthy control {(Recessive model; CKDu versus control, GG versus AA + GA, OR = 2.41, p = 0.03; homozygous model, GG versus AA, OR = 3.54, p = 0.04)}. CC genotype of rs34970857 of the KCNA10 gene and the GG genotype of the SLC13A3 gene are significantly associated with the susceptibility of CKDu.


Subject(s)
MicroRNAs , Renal Insufficiency, Chronic , Adult , Humans , Polymorphism, Single Nucleotide , MicroRNAs/genetics , Genetic Predisposition to Disease , Chronic Kidney Diseases of Uncertain Etiology , Case-Control Studies , Genotype , Renal Insufficiency, Chronic/genetics
6.
Front Neurosci ; 15: 631892, 2021.
Article in English | MEDLINE | ID: mdl-33790735

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease with no definite molecular markers for diagnosis. Metal exposure may alter cellular proteins that contribute to PD. Exploring the cross-talk between metal and its binding proteins in PD could reveal a new strategy for PD diagnosis. We performed a meta-analysis from different PD tissue microarray datasets to identify differentially expressed genes (DEGs) common to the blood and brain. Among common DEGs, we extracted 280 metalloprotein-encoding genes to construct protein networks describing the regulation of metalloproteins in the PD blood and brain. From the metalloprotein network, we identified three important functional hubs. Further analysis shows 60S ribosomal protein L6 (RPL6), a novel intermediary molecule connecting the three hubs of the metalloproteins network. Quantitative real-time PCR analysis showed that RPL6 was downregulated in PD peripheral blood mononuclear cell (PBMC) samples. Simultaneously, trace element analysis revealed altered serum zinc and magnesium concentrations in PD samples. The Pearson's correlation analysis shows that serum zinc and magnesium regulate the RPL6 gene expression in PBMC. Thus, metal-regulating RPL6 acts as an intermediary molecule connecting the three hubs that are functionally associated with PD. Overall our study explores the understanding of metal-mediated pathogenesis in PD, which provides a serum metal environment regulating the cellular gene expression that may light toward metal and gene expression-based biomarkers for PD diagnosis.

7.
NPJ Parkinsons Dis ; 7(1): 3, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33398051

ABSTRACT

Metalloproteins utilizes cellular metals which plays a crucial function in brain that linked with neurodegenerative disorders. Parkinson's disease (PD) is a neurodegenerative disorder that affects geriatric population world-wide. Twenty-four metal-binding protein networks were investigated to identify key regulating protein hubs in PD blood and brain. Amongst, aluminum, calcium, copper, iron, and magnesium protein hubs are the key regulators showing the ability to classify PD from control based on thirty-four classification algorithms. Analysis of these five metal proteins hubs showed involvement in environmental information processing, immune, neuronal, endocrine, aging, and signal transduction pathways. Furthermore, gene expression of functional protein in each hub showed significant upregulation of EFEMP2, MMP9, B2M, MEAF2A, and TARDBP in PD. Dysregulating hub proteins imprint the metal availability in a biological system. Hence, metal concentration in serum and cerebrospinal fluid were tested, which were altered and showed significant contribution towards gene expression of metal hub proteins along with the previously reported PD markers. In conclusion, analyzing the levels of serum metals along with the gene expression in PD opens up an ideal and feasible diagnostic intervention for PD. Hence, this will be a cost effective and rapid method for the detection of Parkinson's disease.

8.
Microb Pathog ; 147: 104415, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32738283

ABSTRACT

Bacterial sepsis affects both neonates and adults worldwide. There is no specific anti-sepsis treatment. Disease management mainly depends on early diagnosis. The gold standard blood culturing method is routinely practiced; it requires 24-48 h for confirmation. Understanding the disease mechanism may help in the early detection of sepsis. We studied the temporal change in NF-kB pathway genes in adult whole blood upon bacterial stimulations across time intervals (2-6 h). Four experimental conditions were investigated (1: Gram-positive, 2: Gram-negative, 3: Gram-positive + Gram-negative stimulated and compared with 4: un-stimulated group) to show host selection of canonical or non-canonical pathway against invading pathogens. Gene expression analysis showed significant variations (p < 0.5) in TLR2, TLR4, TRAF6, NIK, RelA, and RelB upon bacterial stimulants. Further, the correlation analysis showed the coherent behaviour of genes in selecting the canonical or non-canonical pathway. TLR2 sensed by gram-positive bacteria that immediately activates the canonical pathway through RelA, whereas other bacterial stimulants activate the non-canonical pathway via TLR4, NIK, and RelB. In addition, the inflammatory markers showed a significant increase in response to bacterial stimulants, suggesting the immediate activation of innate immunity. Overall, our results show the bacterial specific and time-dependent activation of the NF-kB pathway, which through a light towards the early detection of bacterial sepsis.


Subject(s)
Gram-Positive Bacteria , NF-kappa B , Sepsis , Signal Transduction , Adult , Gram-Positive Bacteria/metabolism , Humans , Infant, Newborn , NF-kappa B/genetics , NF-kappa B/metabolism
9.
Cell Mol Neurobiol ; 40(3): 357-367, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31512170

ABSTRACT

Besides clinical and imaging techniques, there is a lack of molecular makers for the diagnosis of Parkinson's disease (PD). There is an immense need to develop biomarkers associated with the phenotypes which may be valuable for individualized treatment. Single-nucleotide polymorphisms (PARK2: Ser167Asn (G>A) and Val380Leu (G>C); PARK7: IVS4 + 46G>A and IVS4 + 30T>G) in PD-related genes were examined to elucidate its relationship with concentration of serum elements and clinical symptoms of PD. A total of 214 PD patients and 213 controls from Indian population were genotyped using PCR and DNA sequencing methods. The serum element concentrations were detected and clinical symptoms were determined based on UPDRS scale and recorded at the time of sample collection. The IVS4 + 30T>G, Ser167Asn (G>A) and Val380Leu (G>C) polymorphisms appeared to alter element concentrations in PD. The patients with Ser167Asn polymorphism showed significant association with copper, iron and zinc that reinforces the role of A allele as a factor for change in the concentrations of elements, than those patients with G allele. In particular, patients with A allele of Ser167Asn have risk of having high serum iron concentration (OR 11.55, 95% CI 5.59-23.85), which are associated with dementia and postural imbalance. Similar results were observed for Val380Leu (G>C) and IVS4 + 30T>G polymorphisms which suggest their role in element concentration and neurological symptoms. Overall, our study demonstrates the influence of polymorphisms of PD genes on element concentrations and clinical symptoms. Results of this study may be taken into account when considering the contributing factors for PD symptoms.


Subject(s)
Parkinson Disease/blood , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Protein Deglycase DJ-1/genetics , Trace Elements/blood , Ubiquitin-Protein Ligases/genetics , Aged , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , India/epidemiology , Male , Metals, Heavy/analysis , Metals, Heavy/blood , Middle Aged , Parkinson Disease/epidemiology , Parkinson Disease/pathology , Risk Factors , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...