Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337199

ABSTRACT

This paper investigates making an injection mouldable conductive plastic formulation that aims for conductivity into the electromagnetic interference (EMI) shielding range, with good mechanical properties (i.e., stiffness, strength, and impact resistance). While conductivity in the range (electrostatic charge dissipation) and EMI shielding have been attained by incorporating conductive fillers such as carbon black, metals powders, and new materials, such as carbon nanotubes (CNTs), this often occurs with a drop in tensile strength, elongation-to-break resistance, and impact resistance. It is most often the case that the incorporation of high modulus fillers leads to an increase in modulus but a drop in strength and impact resistance. In this work, we have used short carbon fibres as the conductive filler and selected a 50/50 PBT/rPET (recycled PET) for the plastic matrix. Carbon fibres are cheaper than CNTs and graphenes. The PBT/rPET has low melt viscosity and crystallises sufficiently fast during injection moulding. To improve impact resistance, a styrene-ethylene-butadiene-styrene (SEBS) rubber toughening agent was added to the plastic. The PBT/rPET had very low-impact resistance and the SEBS provided rubber toughening to it; however, the rubber caused a drop in the tensile modulus and strength. The short carbon fibre restored the modulus and strength, which reached higher value than the PBT/rPET while providing the conductivity. Scanning electron microscope pictures showed quite good bonding of the current filler (CF) to the PBT/rPET. An injection mouldable conductive plastic with high conductivity and raised modulus, strength, and impact resistance could be made.

2.
Foods ; 12(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37835303

ABSTRACT

This study investigated the replacement of butter with soy wax (SW)/rice bran oil (RBO) oleogel in varied proportions in cookie dough and the resulting cookies. The study mainly evaluates the physical, textural, and chemical properties of the butter cookie dough and cookies by replacing butter with SW/RBO oleogel. The dough was assessed using moisture analysis, microscopy, FTIR Spectroscopy (Fourier Transform Infrared) and impedance spectroscopies, and texture analysis. Micrographs of the dough showed that D-50 (50% butter + 50% oleogel) had an optimal distribution of water and protein. D-0 (control sample containing 100% butter) showed the lowest impedance values. Moisture content ranged between 23% and 25%. FTIR spectroscopy suggested that D-50 exhibited a consistent distribution of water and protein, which CLSM and brightfield microscopy supported. Texture analysis revealed that the dough samples exhibited predominantly fluidic behavior. As the amount of oleogel was raised, the dough became firmer. The prepared cookies showed a brown periphery and light-colored center. Further, a corresponding increase in surface cracks was observed as the oleogel content was increased. Cookies moisture analysis revealed a range between 11 and 15%. Minute changes were observed in the texture and dimensions of the cookies. In summary, it can be concluded that replacing butter with oleogel by up to 50% seems to be feasible without significantly compromising the physicochemical properties of cookie dough and cookies.

3.
Polymers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688251

ABSTRACT

In previous works, we had found that the addition of micron-sized, irregular-shaped aluminum (Al) powder, or Al nano platelets (flakes), improved the mechanical properties of polyesters, and that, additionally, the flakes led to an increase in electrical conductivity. The aim of this work was to examine the effect of nano-spherical particles of aluminum in a 60/40 PBT/PET polyester blend. A blend was used because it can help with the formation of a segregated network of metal particles that allows electrical conductivity at low loading. The notched Izod impact of Al nano-spherical composites increased with nano Al content up to an addition level of 2 vol.%. However, the tensile strength and flexural strength decreased gradually with increasing filler loading. Thus, the spherical shape and nano size of the Al particle caused it to be less effective than the micron-sized, irregular-shaped Al powder, or the Al flakes. The reason for this is that, while nano spherical particles have high surface area for bonding with the matrix, the Al-Al aggregation stands in the way of wetting by the polymer melt, whereas aggregation in flakes does not cause as much of a problem. The segregated network structure to enhance electrical conductivity did not form in this blend system with nano spherical particles. The nano-spherical Al acted as a nucleating agent but did not cause transesterification between the two polyesters or make it more susceptible to degradation.

4.
Polymers (Basel) ; 15(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447466

ABSTRACT

In the present work, different methanesulfonate-based protic ionic liquids (PILs) were synthesized and their structural characterization was performed using FTIR, 1H, and 13C NMR spectroscopy. Their thermal behavior and stability were studied using DSC and TGA, respectively, and EIS was used to study the ionic conductivity of these PILs. The PIL, which was diethanolammonium-methanesulfonate-based due to its compatibility with polybenzimidazole (PBI) to form composite membranes, was used to prepare proton-conducting polymer electrolyte membranes (PEMs) for prospective high-temperature fuel cell application. The prepared PEMs were further characterized using FTIR, DSC, TGA, SEM, and EIS. The FTIR results indicated good interaction among the PEM components and the DSC results suggested good miscibility and a plasticizing effect of the incorporated PIL in the PBI polymer matrix. All the PEMs showed good thermal stability and good proton conductivity for prospective high-temperature fuel cell application.

5.
Materials (Basel) ; 16(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37445127

ABSTRACT

Zirconia (ZrO2) nanoparticles (1-3 wt.%) were incorporated into the epoxy matrix using the ultra-sonication mixing method of dispersion to manufacture nanocomposite coatings. An automatic applicator was used to prepare the coating samples on a stainless steel substrate. The influence of ZrO2 nanoparticles on the physicochemical characteristics of epoxy coatings was evaluated using energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermos-gravimetric analysis (TGA), elastic modulus, and micro-hardness measurement with the nano-indentation technique. The corrosion stability during immersion in 3.5% NaCl solution was monitored using electrochemical impedance spectroscopy (EIS). All ZrO2-containing coatings showed better corrosion stability and adhesion than pure epoxy coating. Epoxy coating incorporated with 2% ZrO2 exhibited the greatest values of corrosion resistance and adhesion due to the effect of nanoparticle properties and their better de-agglomeration in the epoxy matrix than pure epoxy coating.

6.
Polymers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376330

ABSTRACT

Material extrusion (ME) is an additive manufacturing technique capable of producing functional parts, and its use in multi-material fabrication requires further exploration and expansion. The effectiveness of material bonding is one of the main challenges in multi-material fabrication using ME due to its processing capabilities. Various procedures for improving the adherence of multi-material ME parts have been explored, such as the use of adhesives or the post-processing of parts. In this study, different processing conditions and designs were investigated with the aim of optimizing polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) composite parts without the need for pre- or post-processing procedures. The PLA-ABS composite parts were characterized based on their mechanical properties (bonding modulus, compression modulus, and strength), surface roughness (Ra, Rku, Rsk, and Rz), and normalized shrinkage. All process parameters were statistically significant except for the layer composition parameter in terms of Rsk. The results show that it is possible to create a composite structure with good mechanical properties and acceptable surface roughness values without the need for costly post-processing procedures. Furthermore, the normalized shrinkage and the bonding modulus were correlated, indicating the ability to utilize shrinkage in 3D printing to improve material bonding.

7.
Foods ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900458

ABSTRACT

This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that ß-turns and ß-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.

8.
Gels ; 9(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36661813

ABSTRACT

This research evaluated the influence of stearic acid, sunflower lecithin, and sorbitan monooleate on soy wax (SYW)/rice bran oil (RBO)-based oleogels. The physiochemical behavior of oleogel samples was evaluated using colorimetry, microscopy, FTIR, mechanical, crystallization kinetics, X-ray diffraction, and a drug release investigation. The prepared oleogels were light yellow, and adding emulsifiers did not change their appearance. All oleogels showed an oil binding capacity of >98%, independent of emulsifier treatment. The surface topography revealed that emulsifiers smoothed the surface of the oleogels. Bright-field and polarized micrographs showed the presence of wax grains and needles. FTIR spectra indicated that oleogel samples had the same functional group diversity as the raw materials. The oleogel samples lacked a hydrogen-bonding peak. Hence, we postulated that non-covalent interactions were involved in the oleogel preparation. According to stress relaxation studies, the firmness and elastic component of oleogels were unaffected by emulsifiers. However, EML3 (oleogel containing sorbitan monooleate) showed lower relaxing characteristics than the others. EML3 exhibited the slowest crystallization profile. Due to its low d-spacing, EML3 was found to have densely packed crystal molecules and the largest crystallite size. The in vitro drug release studies showed that emulsifier-containing oleogels dramatically affected curcumin release. These results may help customize oleogels properties to adjust bioactive component release in the food and pharmaceutical industries.

9.
Membranes (Basel) ; 12(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35877854

ABSTRACT

This work presents the development of a cost-effective electric-stimulus-responsive bending actuator based on a sulfonated polyvinyl chloride (SPVC)-phosphotungstic acid (PTA) ionic polymer-metal composite (IPMC), using a simple solution-casting method followed by chemical reduction of platinum (Pt) ions as an electrode. The characterizations of the prepared IPMC were performed using Fourier-transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques, Thermogravimetric analysis (TGA), and Energy-dispersive X-ray (EDX) analysis. Excellent ion-exchange capacity (IEC) and proton conductivity (PC), with values of ca. 1.98 meq·g-1 and ca. 1.6 mS·cm-1, respectively, were observed. The water uptake (WU) and water loss (WL) capacities of the IPMC membranes were measured at 25 °C, and found to have maxima of ca. 48% for 10 h, and ca. 36% at 6 V DC for almost 9 min, respectively. To analyze the actuation performance of the developed membrane, tip displacement and actuation force measurements were conducted. Tip displacement was found to be ca. 15.1 mm, whereas bending actuation was found to be 0.242 mN at 4 V DC. The moderate water loss, good proton conductivity (PC), high thermal stability, and good electrochemical properties of the developed IPMC membrane actuator position it as a cost-effective alternative to highly expensive conventional perfluorinated polymer-based actuators.

10.
Gels ; 8(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35735674

ABSTRACT

Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.

11.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566879

ABSTRACT

There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4:Eu2+/Dy3+ (SAO1) and Sr4Al14O25: Eu+2, Dy+3 (SAO2)] with maleic anhydride grafted PP compatibilizer (PRIEX) were prepared, and their auto-glowing properties were examined. After UV excitation at 320 nm, the PP/5PRIEX/SAO1 composites showed green emission at 520 nm, and blue emission was observed for PP/5PRIEX/SAO2 around 495 nm. The intensity of phosphorescence emission and phosphorescence decay was found to be proportional to the filler content (SAO1 and SAO2). The FTIR analysis excluded the copolymerization reaction between the SAO1 and SAO2 fillers and the PP matrix during the high-temperature melt mixing process. The SAO1 and SAO2 fillers decreased the overall crystallinity of the composites without affecting the Tm and Tc (melting and crystallization temperature) values. The thermal stability of the composites was slightly improved with the SAO1 and SAO2 fillers, as seen from the TGA curve. Due to the plasticizing effect of the compatibilizer and the agglomeration of the SAO1 and SAO2 fillers, the tensile modulus, tensile strength, and storage modulus of the composites was found to be decreased with an increase in the SAO1 and SAO2 content. The decreasing effect was more pronounced, especially with the bulk-sized SAO2 filler.

12.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35407222

ABSTRACT

The current study delineates the use of date-palm-derived cellulose nanocrystals (dp-CNCs) as reinforcing agents. dp-CNCs were incorporated in varying amounts to poly(vinyl alcohol)/guar-gum-based phase-separated composite films. The films were prepared by using the solution casting method, which employed glutaraldehyde as the crosslinking agent. Subsequently, the films were characterized by bright field and polarizing microscopy, UV-Vis spectroscopy, FTIR spectroscopy, and mechanical study. The microscopic techniques suggested that phase-separated films were formed, whose microstructure could be tailored by incorporating dp-CNCs. At higher levels of dp-CNC content, microcracks could be observed in the films. The transparency of the phase-separated films was not significantly altered when the dp-CNC content was on the lower side. FTIR spectroscopy suggested the presence of hydrogen bonding within the phase-separated films. dp-CNCs showed reinforcing effects at the lowest amount, whereas the mechanical properties of the films were compromised at higher dp-CNC content. Moxifloxacin was included in the films to determine the capability of the films as a drug delivery vehicle. It was found that the release of the drug could be tailored by altering the dp-CNC content within the phase-separated films. In gist, the developed dp-CNC-loaded poly(vinyl alcohol)/guar-gum-based phase-separated composite films could be explored as a drug delivery vehicle.

13.
Polymers (Basel) ; 14(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335423

ABSTRACT

Conductive plastics are made by placing conductive fillers in polymer matrices. It is known that a conductive filler in a binary polymer blend with a co-continuous morphology is more effective than in a single polymer, because it aids the formation of a 'segregated conductive network'. We embedded a relatively low-cost conductive filler, aluminium nano platelets, in a 60/40 PBT/PET polymer blend. While 25 vol.% of the Al nanoplatelets when placed in a single polymer (PET) gave a material with the resistivity of an insulator (1014 Ωcm), the same Al nano platelets in the 60/40 PBT/PET blend reduced the resistivity to 7.2 × 107 Ωcm, which is in the category of an electrostatic charge dissipation material. While PET tends to give amorphous articles, the 60/40 PBT/PET blends crystallised in the time scale of the injection moulding and hence the conductive articles had dimensional stability above the Tg of PET.

14.
Sci Rep ; 12(1): 4467, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296742

ABSTRACT

An electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a sufficient ion-exchange potential of 1.6 meq g-1 dry film. The absorption capacity of the membrane after almost 6 h of immersion was found to be ca. 245% at 45 °C. The electroless plating with Pt metal was carried out on both sides of the membrane that delivered an excellent proton conductivity of 1.9 × 10-3 S cm-1. Moreover, the scanning electron microscopy (SEM) was conducted to reflect the smooth and consistent surface that can prevent water loss. The water loss capacity of the membrane was found to be ca. 33% at 6 V for 16 min. These results suggest a good actuation output of the ionic polymer metal composite (IPMC) membrane once the electrical potential is applied. The electromechanical characterization displayed a maximum tip displacement of 32 mm at 3 V. A microgripping device based on multifigure IPMC membrane may be developed showing a good potential in micro-robotics.

15.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209224

ABSTRACT

Cellulosic polysaccharides have increasingly been recognized as a viable substitute for the depleting petro-based feedstock due to numerous modification options for obtaining a plethora of bio-based materials. In this study, cellulose triacetate was synthesized from pure cellulose obtained from the waste lignocellulosic part of date palm (Phoenix dactylifera L.). To achieve a degree of substitution (DS) of the hydroxyl group of 2.9, a heterogeneous acetylation reaction was carried out with acetic anhydride as an acetyl donor. The obtained cellulose ester was compared with a commercially available derivative and characterized using various analytical methods. This cellulose triacetate contains approximately 43.9% acetyl and has a molecular weight of 205,102 g·mol-1. The maximum thermal decomposition temperature of acetate was found to be 380 °C, similar to that of a reference sample. Thus, the synthesized ester derivate can be suitable for fabricating biodegradable and "all cellulose" biocomposite systems.


Subject(s)
Cellulose/analogs & derivatives , Cellulose/chemistry , Phoeniceae/chemistry , Cellulose/chemical synthesis , Cellulose/isolation & purification , Cellulose/ultrastructure , Chemical Phenomena , Chemistry Techniques, Synthetic , Spectrum Analysis
16.
Polymers (Basel) ; 14(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35215581

ABSTRACT

Herein, we present new approaches for developing sulfonated polyether ether ketone (SPEEK) and polyaniline-based (PANI) actuator formed by film-casting and chemical reduction of Pt electrodes. We have thoroughly studied the synthesis of SPEEK and characterized it by different analytical techniques. The ion-exchange capacity (IEC) and proton conductivity of SPEEK-PANI polymer membrane were calculated to be 1.98 mmol g-1 and 1.97 × 10-3 S cm-1, respectively. To develop an IPMC actuator, SPEEK was combined with PANI through in-situ polymerization method. SEM and XRD were used to check the morphology of the given SPEEK-PANI-Pt membrane. In addition, FT-IR and EDX techniques confirmed the molecular structure and chemical conformation of SPEEK-PANI polymer membrane. Pt electrode layers homogeneously dispersed on the IPMC membrane surface, which was demonstrated by smooth SEM micrographs. The actuation functioning, including the high bending deflection, proton conductivity, current density and IEC of IPMC actuator based on SPEEK-PANI-Pt, was obtained owing to its strong electrochemical and electromechanical characteristics. Synergistic combinations of SPEEK and PANI produced membrane that are flexible, mechanically strong and robust. The developed materials have immense capability as actuators for various applications including in biomimetics and robotics.

17.
Polymers (Basel) ; 14(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35160620

ABSTRACT

Previously, we reported that amorphous poly(ethylene terephthalate) (PET) filled with irregular nodular aluminium (Al) particles gave simultaneous increases in tensile modulus, tensile strength, and impact resistance, which is unusual for materials. Here, we investigated the effect of the particle shape and size by using nano-platelet Al. The Al nano-platelets had a thickness higher than graphenes and clays, but lower than mica and talc, and due to their large widths, they had high aspect ratios. Due to the ductility of Al, the platelets maintained the high aspect ratio and did not snap during injection moulding. In addition to avoiding the usual drop in tensile strength and impact, the composites with nano Al platelets gave an unusually high flexural modulus (8 GPa), which was almost double that attained practically with talc, mica, and graphene. This was because of the high tendency of the Al nano platelets to become oriented during moulding. The Al-PET composite would be a more cost-and-performance effective combination for making conductive composites. The Al is a cheaper material than graphene, surface treatment for adhesion (to PET) is unnecessary, and dispersion issues, such as exfoliation and de-aggregation, are not a problem.

18.
Materials (Basel) ; 15(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35161084

ABSTRACT

In this work, HDPE/strontium aluminate-based auto glowing composites (SrAl2O4: Eu, Dy (AG1) and Sr4Al14O25: Eu, Dy (AG2)) were prepared, and their phosphorescence studies were conducted. In HDPE/AG1 composites, the green emission was observed at ~500 nm after the UV excitation at 320 nm. The HDPE/AG2 has a blue emission at ~490 nm and, in both cases, the intensity of emission is proportional to the AG1 and AG2 content. The DSC data show that the total crystallinity of both the composites was decreased but with a more decreasing effect with the bulky AG2 filler. The melting and crystallization temperatures were intact, which shows the absence of any chemical modification during high shear and temperature processing. This observation is further supported by the ATR-FTIR studies where no new peaks appeared or disappeared from the HDPE peaks. The tensile strength and modulus of HDPE, HDPE/AG1, and HDPE/AG2 composites were improved with the AG1 and AG2 fillers. The rheological studies show the improvement in the complex viscosity and accordingly the storage modulus of the studied phosphorescent HDPE composites. The SEM images indicate better filler dispersion and filler-matrix adhesion, which improves the mechanical characteristics of the studied HDPE composites. The ageing studies in the glowing composites show that there is a decrease in the intensity of phosphorescence emission on exposure to drastic atmospheric conditions for a longer period and the composites become more brittle.

19.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34639945

ABSTRACT

The article presents a review of the literature on the use of polysaccharide bionanocomposites in the context of their potential use as food packaging materials. Composites of this type consist of at least two phases, of which the outer phase is a polysaccharide, and the inner phase (dispersed phase) is an enhancing agent with a particle size of 1-100 nm in at least one dimension. The literature review was carried out using data from the Web of Science database using VosViewer, free software for scientometric analysis. Source analysis concluded that polysaccharides such as chitosan, cellulose, and starch are widely used in food packaging applications, as are reinforcing agents such as silver nanoparticles and cellulose nanostructures (e.g., cellulose nanocrystals and nanocellulose). The addition of reinforcing agents improves the thermal and mechanical stability of the polysaccharide films and nanocomposites. Here we highlighted the nanocomposites containing silver nanoparticles, which exhibited antimicrobial properties. Finally, it can be concluded that polysaccharide-based nanocomposites have sufficient properties to be tested as food packaging materials in a wide spectrum of applications.

20.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681625

ABSTRACT

Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research.


Subject(s)
Chitosan/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/pharmacology , Food Packaging/methods , Fungi/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...