Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854020

ABSTRACT

NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement: NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.

2.
Neuron ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38878768

ABSTRACT

NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-ß precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.

3.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38050081

ABSTRACT

The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Dendritic Spines , Female , Male , Mice , Animals , Dendritic Spines/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Hippocampus/physiology , RNA, Small Interfering
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293324

ABSTRACT

Developmental instability (DI) is thought to be inversely related to a capacity of an organism to buffer its development against random genetic and environmental perturbations. DI is represented by a trait's inter- and intra-individual variabilities. The inter-individual variability (inversely referred to as canalization) indicates the capability of organisms to reproduce a trait from individual to individual. The intra-individual variability reflects an organism's capability to stabilize a trait internally under the same conditions, and, for symmetric traits, it is expressed as fluctuating asymmetry (FA). When representing a trait as a random variable conditioned on environmental fluctuations, it is clear that, in statistical terms, the DI partitions into "extrinsic" (canalization) and "intrinsic" (FA) components of a trait's variance/noise. We established a simple statistical framework to dissect both parts of a symmetric trait variance/noise using a PCA (principal component analysis) projection of the left/right measurements on eigenvectors followed by GAMLSS (generalized additive models for location scale and shape) modeling of eigenvalues. The first eigenvalue represents "extrinsic" and the second-"intrinsic" DI components. We applied this framework to investigate the impact of mother-fetus major histocompatibility complex (MHC)-mediated immune cross-talk on gene expression noise and developmental stability. We showed that "intrinsic" gene noise for the entire transcriptional landscape could be estimated from a small subset of randomly selected genes. Using a diagnostic set of genes, we found that allogeneic MHC combinations tended to decrease "extrinsic" and "intrinsic" gene noise in C57BL/6J embryos developing in the surrogate NOD-SCID and BALB/c mothers. The "intrinsic" gene noise was negatively correlated with growth (embryonic mass) and the levels of placental growth factor (PLGF), but not vascular endothelial growth factor (VEGF). However, it was positively associated with phenotypic growth instability and noise in PLGF. In mammals, the mother-fetus MHC interaction plays a significant role in development, contributing to the fitness of the offspring. Our results demonstrate that a positive impact of distant MHC combinations on embryonic growth could be mediated by the reduction of "intrinsic" gene noise followed by the developmental stabilization of growth.


Subject(s)
Endothelial Growth Factors , Mothers , Mice , Animals , Female , Humans , Placenta Growth Factor , Vascular Endothelial Growth Factor A , Phenotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, SCID , Fetus , Gene Expression , Mammals
5.
Neurobiol Dis ; 170: 105772, 2022 08.
Article in English | MEDLINE | ID: mdl-35605760

ABSTRACT

Schizophrenia is a psychiatric disorder that affects over 20 million people globally. Notably, schizophrenia is associated with decreased density of dendritic spines and decreased levels of d-serine, a co-agonist required for opening of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that lowered d-serine levels associated with schizophrenia would enhance ion flux-independent signaling by the NMDAR, driving destabilization and loss of dendritic spines. We tested our hypothesis using the serine racemase knockout (SRKO) mouse model, which lacks the enzyme for d-serine production. We show that activity-dependent spine growth is impaired in SRKO mice, but can be acutely rescued by exogenous d-serine. Moreover, we find a significant bias of synaptic plasticity toward spine shrinkage in the SRKO mice as compared to wild-type littermates. Notably, we demonstrate that enhanced ion flux-independent signaling through the NMDAR contributes to this bias toward spine destabilization, which is exacerbated by an increase in synaptic NMDARs in hippocampal synapses of SRKO mice. Our results support a model in which lowered d-serine levels associated with schizophrenia enhance ion flux-independent NMDAR signaling and bias toward spine shrinkage and destabilization.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Dendritic Spines , Disease Models, Animal , Humans , Mice , Mice, Knockout , Neuronal Plasticity , Serine
6.
Cereb Cortex ; 33(1): 23-34, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35203089

ABSTRACT

Spike-timing-dependent plasticity (STDP) is a candidate mechanism for information storage in the brain, but the whole-cell recordings required for the experimental induction of STDP are typically limited to 1 h. This mismatch of time scales is a long-standing weakness in synaptic theories of memory. Here we use spectrally separated optogenetic stimulation to fire precisely timed action potentials (spikes) in CA3 and CA1 pyramidal cells. Twenty minutes after optogenetic induction of STDP (oSTDP), we observed timing-dependent depression (tLTD) and timing-dependent potentiation (tLTP), depending on the sequence of spiking. As oSTDP does not require electrodes, we could also assess the strength of these paired connections three days later. At this late time point, late tLTP was observed for both causal (CA3 before CA1) and anticausal (CA1 before CA3) timing, but not for asynchronous activity patterns (Δt = 50 ms). Blocking activity after induction of oSTDP prevented stable potentiation. Our results confirm that neurons wire together if they fire together, but suggest that synaptic depression after anticausal activation (tLTD) is a transient phenomenon.


Subject(s)
Long-Term Potentiation , Neurons , Long-Term Potentiation/physiology , Action Potentials/physiology , Patch-Clamp Techniques , Neurons/physiology , Reward , Neuronal Plasticity/physiology
7.
STAR Protoc ; 2(4): 100996, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34950882

ABSTRACT

Shrinkage and loss of dendritic spines are vital components of the neuronal plasticity that supports learning. To investigate the mechanisms of spine shrinkage and loss, Oh and colleagues established a two-photon glutamate uncaging protocol that reliably induces input-specific spine shrinkage on dendrites of rodent hippocampal CA1 pyramidal neurons. Here, we provide a detailed description of that protocol and also an optimized version that can be used to induce input- and synapse-specific shrinkage of dendritic spines at physiological Ca2+ levels. For complete details on the use and execution of this protocol, please refer to Oh et al. (2013), Stein et al. (2015), Stein et al. (2020), and Stein et al. (2021).


Subject(s)
CA1 Region, Hippocampal/metabolism , Glutamic Acid/metabolism , Pyramidal Cells/metabolism , Animals , CA1 Region, Hippocampal/cytology , Dendritic Spines/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Photons , Rats , Rats, Sprague-Dawley
8.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638989

ABSTRACT

The latest vaccination campaign has actualized the potential impact of antigenic stimuli on reproductive functions. To address this, we mimicked vaccination's effects by administering keyhole limpet hemocyanin (KLH ) to CD1 male mice and used their sperm for in vitro fertilization (IVF). Two-cell embryos after IVF with spermatozoa from control (C) or KLH-treated (Im) male mice were transferred to surrogate mothers mated with vasectomized control (C) or KLH-treated (Im) male mice, resulting in four experimental groups: C-C, Im-C, C-Im, and Im-Im. The pre-implantation losses were significantly lower in the Im-C group than in the C-Im group. At the same time, the resorption rates reduced markedly in the C-Im compared to the Im-C group. Embryo and placenta weights were significantly higher in the Im-Im group. Although the GM-CSF levels were lower in the amniotic fluid of the gestating surrogate mothers in the Im-Im group, they were strongly correlated with embryo mass. The number-size trade-off was only significant in the Im-Im group. This suggests a positive, cooperative effect of spermatozoa and seminal fluid from immune-primed males on embryo growth and the optimal distribution of surrogate mother maternal resources despite the negative impact of males' antigenic challenge on the IVF success rate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Embryo Transfer/methods , Embryonic Development/immunology , Fertilization in Vitro/methods , Hemocyanins/administration & dosage , Semen/immunology , Spermatozoa/immunology , Vaccination/methods , Animals , Antibodies/blood , Blastocyst/immunology , Blastocyst/metabolism , Cell Division/immunology , Embryo Implantation/immunology , Female , Hemocyanins/immunology , Immunoglobulin G/blood , Male , Mice , Pregnancy , Vasectomy/methods
9.
Reproduction ; 160(1): 117-127, 2020 07.
Article in English | MEDLINE | ID: mdl-32485669

ABSTRACT

The life-history theory suggests that parental experience of the environment is passed to offspring, which allows them to adapt to prevailing conditions. This idea is supported from the mother's side, but to a much less extent from the father's side. Here, we investigated the effect of immunising fathers on pre- and neonatal development and on immune and neuroendocrine phenotypes of their offspring in C57BL/6J mice. Nine days before mating, fathers were intraperitoneally injected with the immunogenic protein keyhole limpet hemocyanin (KLH). Females mated with immunised males had less pre-weaning mortality of newborns compared to those mated with control males. Although the antibody response to KLH was similar for the male offspring of control and immunised fathers, the mass indexes of their main immune organs and their androgen response differed significantly. The mass indexes of the thymus and spleen in adult male offspring of immunised fathers were higher compared with the control offspring. The plasma testosterone levels were significantly decreased after KLH administration in the male offspring of control but not of immunised fathers. This was correlated with changes in sperm average path and straight-line velocities. Finally, excitatory neurotransmitters prevailed over inhibitory ones in the amygdala of the progeny of immunised fathers, while in control offspring, the opposite occurred. This is indicative of complex behavioural changes in the offspring of immunised fathers, including sexual ones. Therefore, the paternal experience of foreign antigens modulates the immune and neuroendocrine systems of their progeny, suggesting possible survival and reproductive adaptations to parasitic pressure.


Subject(s)
Cell Communication , Hemocyanins/adverse effects , Immunization/adverse effects , Phenotype , Prenatal Exposure Delayed Effects/pathology , Reproduction , Spermatozoa/physiology , Animals , Animals, Newborn , Female , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Spermatozoa/cytology
10.
Mol Hum Reprod ; 25(2): 88-99, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30445548

ABSTRACT

STUDY QUESTION: Does the genotype of the surrogate mother modulate the body composition and immunity of her offspring? SUMMARY ANSWER: C57BL/6J (B6) progenies carried by immunodeficient NOD SCID (NS) mothers had increased adaptive but decreased innate, immune responsiveness in comparison with the same genotype offspring carried by immunocompetent mothers, B6 and BALB/c (C); the B6 progenies carried by the same genotype mothers also showed higher body fat than the others. WHAT IS KNOWN ALREADY: Differences in the major histocompatibility complex (MHC) genes between mother and foetus is considered as an important factor in prenatal embryo development, whereas the impact of such dissimilarity on the phenotype of the mature progeny is unclear. STUDY DESIGN, SIZE, DURATION: Transplantation of two-cell mouse embryos into recipient females of the different MHC (H2) genotypes was used as an approach to simulate three variants of the immunogenic mother-foetus interaction: (i) bidirectional immunogenic dialogue between B6 (H2b haplotype) embryos and C (H2d haplotype) surrogate mother; (ii) one-way immunogenic interaction between B6 embryos and immunodeficient NS (H2g7 haplotype) surrogate mother and (iii) reduced immunogenetic dialogue between embryos and surrogate mother of the same H2b haplotype resulting in only a maternal response to HY antigens of male foetuses. Delivered by Caesarean section, pups were fostered by lactating B6 females and weighed after weaning (n = 171). Body mass and composition and innate and adaptive immunity were assessed in selected progeny groups at 9-11 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study was performed on the specific pathogen-free mouse, inbred strains C57BL/6J, NOD SCID and BALB/c. Plasma progesterone in pregnant females was measured by enzyme-linked immunosorbent assay (ELISA). Body composition was determined by magnetic resonance spectroscopy using a low-field NMR spectrometer (EchoMRI, USA). To assess peritoneal macrophage responses (innate immunity) to anthrax, lactate dehydrogenase (LDH) and interleukin-1 (IL-1ß) were measured in a culture medium 24 h after the addition of both anthrax-lethal factor and anthrax-protective antigen. To assess adaptive immunity, 9-10 males in experimental groups were infected with Helicobacter hepaticus. Faeces collected 2 and 4 weeks after infection was used for quantitative assessment of the H. hepaticus DNA by real-time polymerase chain reaction. IgA, interferon (IFN-γ), tumour necrosis factor (TNFα), interleukin-17 (IL-17) and interleukin-10 (IL-10) in colon tissue and IgG in serum were determined in samples collected 4 weeks after gavage with H. hepaticus using ELISA. For statistical analyses, ANCOVA, post hoc least significant difference (LSD) test, Student's t-test, Spearman rank correlations and χ2 test were performed. P-value <0.05 was considered as a statistically significant difference. MAIN RESULTS AND THE ROLE OF CHANCE: ANCOVA with litter size and age as covariates revealed significant effects of the surrogate mother genotype on body mass and percent of fat in their adult progeny (F2149 = 15.60, P < 0.001 and F2149 = 5.02, P = 0.007, respectively). Adult B6 mice carried by B6 surrogate mothers were characterized by a higher percentage of body fat in comparison with offspring that were carried by NS and C females. In comparison with the male offspring carried by the B6 and C mothers, male B6 progenies carried by immunodeficient NS mothers had a higher humoral immune response (serum IgG) against oral infection with H. hepaticus, but lower in vitro macrophage IL-1ß reaction to the anthrax. Four weeks after the infection of offspring, concentrations of serum IgG and colon IL-10 correlated positively with maternal progesterone on Day 4 after embryo transfer and negatively with DNA of H. hepaticus. One-way ANOVA confirmed a statistically significant impact of surrogate mother genotype on adaptive (IgG) and innate (IL-1ß) immunity (F2.26 = 26.39, P < 0.001 and F2.27 = 5.89, P = 0.008, respectively). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The main limitation of our study is the number of combinations of mother and foetus interactions, in particular, transfer of only one embryo genotype was used. Also, it is a descriptive study, which requires further analysis of the epigenetic mechanisms of the observed phenotypic effects of surrogate mother genotype. WIDER IMPLICATIONS OF THE FINDINGS: Our experimental data demonstrate that the transfer of inbred embryos to surrogate mothers of the different genotypes is a prospective experimental model for the study of epigenetic effects of the immunogenetic interactions between mother and foetus. The experimental approach tested in our study will be in demand for the development of criteria for choosing surrogate mothers. In particular, immunocompetence of the surrogate mother along with genetic distance of her MHC alleles to the transferred embryos have a significant impact on offspring development. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Russian FPI (6/099/2017), budget projects (0324-2016-0002 and 0324-2018-0016) and implemented using the equipment of the Centre for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (Unique project identifier RFMEFI62117X0015). The authors report no conflicts of interest.


Subject(s)
Embryo Transfer , Embryo, Mammalian/metabolism , Adaptive Immunity/genetics , Adaptive Immunity/physiology , Animals , Anthrax/immunology , Body Composition/physiology , Body Mass Index , Embryo, Mammalian/immunology , Female , Genotype , Helicobacter hepaticus/immunology , Helicobacter hepaticus/pathogenicity , Immunity, Innate/genetics , Immunity, Innate/physiology , Macrophages/immunology , Macrophages/microbiology , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pregnancy
11.
Transgenic Res ; 27(1): 1-13, 2018 02.
Article in English | MEDLINE | ID: mdl-29264679

ABSTRACT

Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte-macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.


Subject(s)
Contactins/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mice, Transgenic/genetics , Transgenes , Animals , Body Composition/genetics , Body Composition/physiology , Drinking/genetics , Eating/genetics , Female , Gene Expression Regulation , Humans , Hypertension/genetics , Male , Mice, Knockout , Phenotype , Polymerase Chain Reaction
12.
Beilstein J Nanotechnol ; 6: 976-86, 2015.
Article in English | MEDLINE | ID: mdl-25977869

ABSTRACT

The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5-30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...