Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36235880

ABSTRACT

The present work aimed to study the synergistic response of bioresorbable polylactide/bioactive wollastonite scaffolds towards mechanical stability, mesenchymal stromal cell colonization, and antibacterial activity in the physiological environment. Wollastonite was synthesized at 800 °C within 2 h by sol-gel combustion method. The surface area was found to be 1.51 m2/g, and Transmission Electron Microscopy (TEM) micrographs indicated the presence of porous structures. Fused deposition modeling was used to prepare 3D-printed polylactide/wollastonite and polylactide/hydroxyapatite scaffolds. Scanning Electron Microscopy (SEM) micrographs confirmed the interconnected porous structure and complex geometry of the scaffolds. The addition of wollastonite decreased the contact angle of the scaffolds. The mechanical testing of scaffolds examined by computational simulation, as well as machine testing, revealed their non-load-bearing capacity. The chemical constituent of the scaffolds was found to influence the attachment response of different cells on their surface. The incorporation of wollastonite effectively reduced live bacterial attachment, whereas the colonization of mesenchymal cells was improved. This observation confirms polylactide/wollastonite scaffold possesses both bactericidal as well as cytocompatible properties. Thus, the risk of peri-implant bacterial film formation can be prevented, and the biological fixation of the scaffold at the defect site can be enhanced by utilizing these composites.

2.
Mater Sci Eng C Mater Biol Appl ; 118: 111456, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255041

ABSTRACT

The current investigation aims to replace the synthetic starting materials with biowaste to synthesize and explore three different silicate bioceramics. Pure silica from rice husk was extracted by decomposition of rice husk in muffle furnace followed by alkali treatment and acid precipitation. Raw eggshell and extracted silica were utilized for the preparation of wollastonite, diopside and forsterite by the solid-state method. The TG-DSC analysis shows that the crystallization temperature of wollastonite, diopside and forsterite was found to be 883 °C, 870 °C and 980 °C, respectively. The phase purity of wollastonite was attained at 1100 °C whereas diopside and forsterite were composed of secondary phases even after calcination at 1250 °C and 1300 °C respectively. All three materials behaved differently when exposed to the physiological environment, as wollastonite exhibited remarkable apatite deposition within 3 days whereas a distinct apatite phase was noticed on the surface of diopside after 2 weeks and forsterite shows the formation of apatite phase after five weeks of immersion. The rapid dissolution of Mg2+ ion from forsterite lowered the leaching of silicate ions into the simulated body fluid leading to poor apatite deposition over its surface. Chemical composition was found to plays a key role in the biomineralization ability of these bioceramics. Hemolysis and Lactate Dehydrogenase (LDH) release assays were performed to evaluate the hemocompatibility of silicate ceramics cultured at different concentrations (62.5, 125, and 250 µg/mL) with red blood cells and mononuclear leucocytes (MLs) of mice. The hemolytic activity of all the tested bioceramics was insignificant (less than 1%). The interaction between diopside and mouse multipotent mesenchymal stromal cells (MMSCs) caused a negligible increase in the number of apoptosis-associated Annexin V-binding cells whereas forsterite and wollastonite induced an increase in the number of the apoptotic cells only at the concentration of 250 µg/mL. The LDH assay did not show statistically significant changes in the proliferation of MMSCs after treatment with the bioceramics at the tested concentrations when compared to control (p > 0.05). This finding showed that the death of a part of cells during the first 24 h of incubation did not prevent the proliferation of MMSCs incubated with diopside, forsterite and wollastonite for 72 h.


Subject(s)
Oryza , Animals , Biomineralization , Ceramics , Egg Shell , Mice , Silicates , Solubility
3.
Polymers (Basel) ; 12(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316955

ABSTRACT

The major problem in bone tissue engineering is the development of scaffolds which can simultaneously meet the requirements of porous structure, as well as have the ability to guide the regeneration of damaged tissue by biological fixation. Composites containing biodegradable matrix and bioactive filler are the new hope in this research field. Herein we employed a simple and facile solvent casting particulate-leaching method for producing polylactide acid/hydroxyapatite (PLA/HA) composites at room temperature. FT-IR analysis confirmed the existence of necessary functional groups associated with the PLA/HA composite, whereas energy-dispersive X-ray (EDX) spectra indicated the uniform distribution of hydroxyapatite particles in the polymer matrix. The beehive-like surface morphology of the composites revealed the presence of macropores, ranged from 300 to 400 µm, whereas the thickness of the pores was noticed to be 1-2 µm. The total porosity of the scaffolds, calculated by hydrostatic weighing, was found to be 79%. The water contact angle of pure PLA was decreased from 83.6 ± 1.91° to 62.4 ± 4.17° due to the addition of hydroxyapatite in the polymer matrix. Thus, the wettability of the polymeric biomaterial could be increased by preparing their composites with hydroxyapatite. The adhesion of multipotent mesenchymal stromal cells over the surface of PLA/HA scaffolds was 3.2 times (p = 0.03) higher than the pure PLA sample. Subcutaneous implantation in mice demonstrated a good tolerance of all tested porous scaffolds and widespread ingrowth of tissue into the implant pores. HA-containing scaffolds showed a less pronounced inflammatory response after two weeks of implantation compared to pure PLA. These observations suggest that PLA/HA composites have enormous potential for hard tissue engineering and restoring maxillofacial defects.

4.
Mater Sci Eng C Mater Biol Appl ; 111: 110750, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279822

ABSTRACT

A promising direction for the replacement of expanded bone defects is the development of bioimplants based on synthetic biocompatible materials impregnated with growth factors that stimulate bone remodeling. Novel biomimetic highly porous ultra-high molecular weight polyethylene (UHMWPE)/40% hydroxyapatite (HA) scaffold for reconstructive surgery with the porosity of 85 ± 1% vol. and a diameter of pores in the range of 50-800 µm was developed. The manufacturing process allowed the formation of trabecular-like architecture without additional solvents and thermo-oxidative degradation. Biomimetic UHMWPE/HA scaffold was biocompatible and provided effective tissue ingrowth on a model of critical-sized cranial defects in mice. The combined use of UHMWPE/HA with Bone Morphogenetic Protein-2 (BMP-2) demonstrated intensive mineralized bone formation as early as 3 weeks after surgery. The addition of erythropoietin (EPO) significantly enhanced angiogenesis in newly formed tissues. The effect of EPO of bacterial origin on bone tissue defect healing was demonstrated for the first time. The developed biomimetic highly porous UHMWPE/HA scaffold can be used separately or in combination with rhBMP-2 and EPO for reconstructive surgery to solve the problems associated with difference between implant architecture and trabecular bone, low osteointegration and bioinertness.


Subject(s)
Biocompatible Materials/chemistry , Bone Diseases/surgery , Bone Morphogenetic Protein 2/chemistry , Durapatite/chemistry , Erythropoietin/chemistry , Polyethylenes/chemistry , Transforming Growth Factor beta/chemistry , Animals , Biocompatible Materials/pharmacology , Bone Diseases/therapy , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/therapeutic use , Bone Regeneration/drug effects , Bone and Bones/pathology , Bone and Bones/physiology , Drug Carriers/chemistry , Erythropoietin/metabolism , Erythropoietin/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Nanocomposites/chemistry , Neovascularization, Physiologic/drug effects , Porosity , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Plastic Surgery Procedures , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...