Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-496021

ABSTRACT

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Vaccine effectiveness also varies with the variant of infection. Here, we compared the protective efficacy of COVAXIN(R) following 2 and 3 dose immunizations against the Delta variant and also studied the efficacy of COVAXIN(R) against Omicron variants in a Syrian hamster model. The antibody response, clinical observations, viral load reduction and lung disease severity after virus challenge were studied. Protective response in terms of the reduction in lung viral load and lung lesions were observed in both the 2 dose as well as 3 doses COVAXIN(R) immunized group when compared to placebo group following the Delta variant challenge. In spite of the comparable neutralizing antibody response against the homologous vaccine strain in both the 2 dose and 3 dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group post Delta variant challenge indicating the involvement of cell mediated immune response also in protection. In the vaccine efficacy study against the Omicron variants i.e., BA.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups in comparison to the placebo groups. The present study shows that administration of COVAXIN(R) booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the Omicron variants BA.1.1 and BA.2.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22273859

ABSTRACT

BackgroundIndia experienced the second wave of the COVID-19 pandemic in March 2021, driven by the delta variant. Apprehensions around the usefulness of vaccines against delta variant posed a risk to the vaccination program. Therefore, we estimated the effectiveness of two doses of the ChAdOx1 nCoV-19 (Covishield) vaccine against COVID-19 infection among individuals [≥]45 years in Chennai, India. MethodsA community-based cohort study was conducted from May to September 2021 in a selected geographic area in Chennai, Tamil Nadu. The estimated sample size was 10,232. We enumerated individuals from all eligible households and periodically updated vaccination and COVID-19 infection data. We computed vaccine effectiveness with its 95% confidence interval for two doses of the Covishield vaccine against any COVID-19 infection. ResultsWe enrolled 69,435 individuals, of which 21,793 were above 45 years. Two dose coverage of Covishield in the 18+ and 45+ age group was 18% and 31%, respectively. The overall incidence of COVID-19 infection was 1099 per 100,000 population. The vaccine effectiveness against COVID-19 disease in the [≥]45 age group was 61.3% (95% CI: 43.6 - 73.4) at least two weeks after receiving the second dose of Covishield. Genomic analysis of 74 (28 with two doses, 15 with one dose, and 31 with zero dose) out of the 90 aliquots collected from the 303 COVID-19 positive individuals in the 45+ age group showed delta variants and their sub-lineages. ConclusionWe demonstrated the effectiveness of two doses of the ChAdOx1 vaccine against the delta variant in the general population of Chennai. We recommend similar future studies considering emerging variants and newer vaccines. Two-dose vaccine coverage could be ensured to protect against COVID-19 infection.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21266954

ABSTRACT

The aim of this study was to identify the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n=583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021.Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21267278

ABSTRACT

BackgroundWe report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India which had caused fatal encephalitis in an adolescent male and the outbreak response which led to the successful containment of the disease and the related investigations. MethodsQuantitative real-time RT-PCR, ELISA based antibody detection and whole genome sequencing were performed to confirm the Nipah virus infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs and blood samples for Nipah virus screening by real time RT-PCR and anti-Nipah virus bat IgG ELISA. Plaque reduction neutralization test was performed for the detection of neutralizing antibodies. ResultsNipah viral RNA and anti-NiV IgG antibodies were detected in the serum of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius and 37.73% of Rousettus leschenaultia. Neutralizing antibodies against NiV could be detected in P.medius. ConclusionsStringent surveillance and awareness campaigns needs to be implemented in the area to reduce human-bat interactions and minimize spill over events which can lead to sporadic outbreaks of NiV.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-470293

ABSTRACT

Delta variant has evolved to become dominant SARS-CoV-2 lineage worldwide and there are reports of secondary infections with varying severity in vaccinated and unvaccinated naturally recovered COVID-19 patients. As the protective immunity following the infection wanes within few months, studies of re-infection after prolonged duration is needed. Hence we assessed the potential of re-infection by Delta, Delta AY.1 and B.1 in COVID-19 recovered hamsters after 3 months of infection. Re-infection with Delta and B.1 variants in hamsters showed reduced viral shedding, lung pathology and lung viral load, whereas the upper respiratory tract viral load remained similar to that of first infection. The reduction in viral load and lung pathology after re-infection with Delta AY.1 variant was not marked. Further we assessed the disease characteristics of Delta AY.1 to understand whether it has any replication advantage over Delta variant and B.1 variant, an early isolate in Syrian hamsters. Body weight changes, viral load in respiratory organs, lung pathology, cytokine response and neutralizing antibody response were assessed. Delta AY.1 variant produced milder disease in comparison to Delta variant and the neutralizing response was similar against Delta, B.1 and B.1.351 variant in contrast to Delta or B.1 infected hamsters which showed a significant reduction in neutralization titres against B.1.351. Elevation of IL-6 levels was observed post infection in hamsters after primary infection. The prior infection could not produce sterilizing immunity but the protective effect was evident following reinfection. This indicates the importance of the transmission prevention efforts even after achieving herd immunity. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSecondary infections with Delta variant are being widely reported and there are reports of increased disease severity. Delta sub lineages with K417N substitution has caused concern worldwide due to the presence of the same substitution in Beta variant, a Variant of Concern known for its immune evasion. The information on the biological characteristics of this sub lineage is also scanty. Added value of this studyThe present study showed that the secondary infection with Delta variant does not show any evidence of increased disease severity in hamster model. Delta AY. 1 variant produces mild disease in Syrian hamsters in contrast to severe disease caused by Delta variant. Delta, B.1 and AY.1 variant infected hamster sera showed comparable cross neutralizing response against each other. In contrast to the lower neutralizing response shown by B.1 and Delta variant infected animals against B.1.351 variant, Delta AY.1 showed comparable response as that with other variants. Implications of the available evidenceSARS-CoV-2 infections do not produce sterilizing immunity but protect from developing severe disease in case of Delta variant re-infection indicating the importance of the transmission prevention efforts even after achieving herd immunity. Delta AY. 1 infection in hamsters did not show any evidence of speculated immune evasion.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-460724

ABSTRACT

We have developed a monoclonal antibody (mAb) cocktail (ZRC-3308) comprising of ZRC3308-A7 and ZRC3308-B10 in the ratio 1:1 for COVID-19 treatment. The mAbs were designed to have reduced immune effector functions and increased circulation half-life. mAbs showed good binding affinities to non-competing epitopes on RBD of SARS-CoV-2 spike protein and were found neutralizing SARS-CoV-2 variants B.1, B.1.1.7, B.1.351, B.1.617.2 and B.1.617.2 AY.1 in vitro. The mAb cocktail demonstrated effective prophylactic and therapeutic activity against SARS-CoV-2 infection in Syrian hamsters. The antibody cocktail appears to be a promising candidate for the prophylactic use and for therapy in early COVID-19 cases which have not progressed to severe disease.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-454511

ABSTRACT

The recent emergence of the SARS-CoV-2 Variant of Concern, B.1.617.2 (Delta) variant and its high transmissibility has led to the second wave in India. BBV152, a whole-virion inactivated SARS-CoV-2 vaccine used for mass immunization in India, showed a 65.2% protection against the Delta variant in a double-blind, randomized, multicentre, phase 3 clinical trial. Subsequently, Delta has been further mutated to Delta AY.1, AY.2, and AY.3. Of these, AY.1 variant was first detected in India in April 2021 and subsequently from twenty other countries as well. Here, we have evaluated the IgG antibody titer and neutralizing potential of sera of COVID-19 naive individuals full doses of BBV152 vaccine, COVID-19 recovered cases with full dose vaccines and breakthrough cases post-immunization BBV152 vaccines against Delta, Delta AY.1 and B.1.617.3. A reduction in neutralizing activity was observed with the COVID-19 naive individuals full vaccinated (1.3, 1.5, 1.9-fold), COVID-19 recovered cases with full BBV152 immunization (2.5, 3.5, 3.8-fold) and breakthrough cases post-immunization (1.9, 2.8, 3.5-fold) against Delta, Delta AY.1 and B.1.617.3 respectively compared to B.1 variant. A minor reduction was observed in the neutralizing antibody titer in COVID-19 recovered cases full BBV152 vaccinated and post immunized infected cases compared to COVID-19 naive vaccinated individuals. However, with the observed high titers, the sera of individuals belonging to all the aforementioned groups they would still neutralize the Delta, Delta AY.1 and B.1.617.3 variants effectively.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-445424

ABSTRACT

BackgroundConsidering the potential threat from emerging SARS-CoV-2 variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. MethodsVirus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity of the isolate was assessed in Syrian hamster model and compared with B.1 variant. ResultsB.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract, lung lesions and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters sera with the B.1.1.28.2 variant. ConclusionsB.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and in comparison, with B.1 variant was found more pathogenic. The findings of increased disease severity and neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-443968

ABSTRACT

Multiple SARS-CoV-2 variants have been emerged and created serious public health in the affected countries. The variant of Concern associated with high transmissibility, disease severity and escape mutations is threat to vaccination program across the globe. Travel has been important factor in spread of SARS-CoV-2 variants worldwide. India has also witnessed the dreadful effect of these SARS-CoV-2 variants. Here, we report the Isolation and characterization of SARS-CoV-2 VOC, 20H/501Y.V2 (B.1.351), from UAE travelers to India. The virus isolate would be useful to determine the efficacy of the currently available vaccines in India.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-443645

ABSTRACT

Covishield comprises the larger proportion in the vaccination program in India. Hence, it is of utmost importance to understand neutralizing capability of vaccine against the B.1.617.1 variant which is considered to responsible for surge of the cases in India. The neutralizing-antibody (NAb) titer against B.1.167.1 and prototype B.1 variant (D614G) was determined of the vaccine sera (4 weeks after second dose) of COVID-19 naive subjects (n=43) and COVID-19 recovered subjects (n=18). The results demonstrated that sera of COVID-19 recovered subjects (n=18) who received two doses of Covishield have higher NAb response compared to the COVID-19 naive with a significant difference (p<0.0001) in NAb titer against B.1 and B.1.617.1 In-spite of reduction in the neutralizing titer against B.1.617.1 variant; Covishield vaccine-induced antibodies are likely to be protective to limit the severity and mortality of the disease in the vaccinated individuals.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-442222

ABSTRACT

The study investigates the replication cycle and transcriptional pattern of the B.1.1.7 variant. It was observed that the B.1.1.7 variant required a longer maturation time. The transcriptional response demonstrated higher expression of ORF6 and ORF8 compared to nucleocapsid transcript till the eclipse period which might influence higher viral replication. The number of infectious viruses titer is higher in the B.1.1.7, despite a lesser copy number than B.1, indicating higher infectivity.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-437153

ABSTRACT

Many SARS-CoV-2 variants of concern has been reported recently which were linked to increased transmission. In our earlier study on virus shedding using VOC 202012/01(UK variant) and D614G variant in hamster model, we observed significantly higher viral RNA shedding through nasal wash in case of UK variant. Hence, we compared the transmission of both the UK and D614G variant by various routes in Syrian hamsters to understand whether the high viral RNA shedding could enhance the transmission efficiency of the variant. The current study demonstrated comparable transmission efficiency of both UK and D614G variants of SARS-CoV-2 in Syrian hamsters.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-432136

ABSTRACT

The emergence of SARS-CoV-2 variants has posed a serious challenge to public health system and vaccination programs across the globe. We have studied the pathogenicity and virus shedding pattern of the SARS-CoV-2 VOC 202012/01 and compared with D614G variant in Syrian hamsters. VOC 202012/01 could produce disease in hamsters characterized by body weight loss and respiratory tract tropism but mild lung pathology. Further, we also documented that neutralizing antibodies developed against VOC 202012/01 could equally neutralize D614G variant. Higher load of VOC 202012/01 in the nasal wash specimens was observed during the first week of infection outcompeting the D614G variant. The findings suggest increased fitness of VOC 202012/01 to the upper respiratory tract which could lead to higher transmission. Further investigations are needed to understand the transmissibility of new variants. One-Sentence SummarySARS-CoV-2 VOC 202012/01 infected hamsters demonstrated high viral RNA shedding through the nasal secretions and significant body weight loss with mild lung pathology compared to the D614G variant.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-429480

ABSTRACT

Vaccines remain the key protective measure to achieve herd immunity to control the disease burden and stop COVID-19 pandemic. We have developed and assessed the immunogenicity and protective efficacy of two formulations (1mg and 2mg) of ZyCoV-D (a plasmid DNA based vaccine candidates) administered through Needle Free Injection System (NFIS) and syringe-needle (intradermal) in rhesus macaques with three dose vaccine regimens. The vaccine candidate 2mg dose administered using Needle Free Injection System (NFIS) elicited a significant immune response with development of SARS-CoV-2 S1 spike region specific IgG and neutralizing antibody (NAb) titers during the immunization phase and significant enhancement in the levels after the virus challenge. In 2 mg NFIS group the IgG and NAb titers were maintained and showed gradual rise during the immunization period (15 weeks) and till 2 weeks after the virus challenge. It also conferred better protection to macaques evident by the viral clearance from nasal swab, throat swab and bronchoalveolar lavage fluid specimens in comparison with macaques from other immunized groups. In contrast, the animals from placebo group developed high levels of viremia and lung disease following the virus challenge. Besides this, the vaccine candidate also induced increase lymphocyte proliferation and cytokines response (IL-6, IL-5).The administration of the vaccine candidate with NFIS generated a better immunogenicity response in comparison to syringe-needle (intradermal route). The study demonstrated immunogenicity and protective efficacy of the vaccine candidate, ZyCoV-D in rhesus macaques.

15.
Anup Agarwal; Aparna Mukherjee; Gunjan Kumar; Pranab Chatterjee; Tarun Bhatnagar; Pankaj Malhotra; B Latha; Sunita Bundas; Vivek Kumar; Ravi Dosi; Janak Kumar Khambholja; Rosemarie de Souza; Raja Rao Mesipogu; Saurabh Srivastava; Simmi Dube; Kiran Chaudhary; Subash S; S. Anbuselvi Mattuvar K; V Rajendran; A Sundararajaperumal; P Balamanikandan; R S Uma Maheswari; R Jayanthi; S Ragunanthanan; Sudhir Bhandari; Ajeet Singh; Ashok Pal; Anjali Handa; Govind Rankawat; Ketan Kargirwar; Joyce Regi; Darshana Rathod; Edwin Pathrose; Nirankar Bhutaka; Mayur H Patel; Rahul J Verma; Kamal Malukani; Shivani Patel; Apurv Thakur; Satish Joshi; Rashmi Kulkarni; Nilay N Suthar; Nehal M Shah; Hemang M Purohit; Cherry K Shah; Monila N Patel; Saket Shah; Smit H Shah; Tehsim Memon; Vishal R Beriwala; Kusum Jashnani; Fatema Ezzy; Simran Agrawal; Rakesh Bhadade; Atish M N; Tushar Madke; Vikash Kavishwar; Ramesh Waghmare; Nitin Valvi; B Thrilok Chander; A Vinaya Sekhar; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham.
Preprint in English | medRxiv | ID: ppmedrxiv-20187252

ABSTRACT

ObjectivesConvalescent plasma (CP) as a passive source of neutralizing antibodies and immunomodulators is a century-old therapeutic option used for the management of viral diseases. We investigated its effectiveness for the treatment of COVID-19. DesignOpen-label, parallel-arm, phase II, multicentre, randomized controlled trial. SettingThirty-nine public and private hospitals across India. ParticipantsHospitalized, moderately ill confirmed COVID-19 patients (PaO2/FiO2: 200-300 or respiratory rate > 24/min and SpO2 [≤] 93% on room air). InterventionParticipants were randomized to either control (best standard of care (BSC)) or intervention (CP + BSC) arm. Two doses of 200 mL CP was transfused 24 hours apart in the intervention arm. Main Outcome MeasureComposite of progression to severe disease (PaO2/FiO2< 100) or all-cause mortality at 28 days post-enrolment. ResultsBetween 22nd April to 14th July 2020, 464 participants were enrolled; 235 and 229 in intervention and control arm, respectively. Composite primary outcome was achieved in 44 (18.7%) participants in the intervention arm and 41 (17.9%) in the control arm [aOR: 1.09; 95% CI: 0.67, 1.77]. Mortality was documented in 34 (13.6%) and 31 (14.6%) participants in intervention and control arm, respectively [aOR) 1.06 95% CI: -0.61 to 1.83]. InterpretationCP was not associated with reduction in mortality or progression to severe COVID-19. This trial has high generalizability and approximates real-life setting of CP therapy in settings with limited laboratory capacity. A priori measurement of neutralizing antibody titres in donors and participants may further clarify the role of CP in management of COVID-19. Trial registrationThe trial was registered with Clinical Trial Registry of India (CTRI); CTRI/2020/04/024775.

16.
Preprint in English | bioRxiv | ID: ppbiorxiv-285445

ABSTRACT

We report the development and evaluation of safety and immunogenicity of a whole virion inactivated SARS-COV-2 vaccine (BBV152), adjuvanted with aluminium hydroxide gel (Algel), or a novel TLR7/8 agonist adsorbed Algel. We used a well-characterized SARS-CoV-2 strain and an established vero cell platform to produce large-scale GMP grade highly purified inactivated antigen, BBV152. Product development and manufacturing were carried out in a BSL-3 facility. Immunogenicity was determined at two antigen concentrations (3g and 6g), with two different adjuvants, in mice, rats, and rabbits. Our results show that BBV152 vaccine formulations generated significantly high antigen-binding and neutralizing antibody titers, at both concentrations, in all three species with excellent safety profiles. The inactivated vaccine formulation containing TLR7/8 agonist adjuvant-induced Th1 biased antibody responses with elevated IgG2a/IgG1 ratio and increased levels of SARS-CoV-2 specific IFN-{gamma}+ CD4 T lymphocyte response. Our results support further development for Phase I/II clinical trials in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...