Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Genome Res ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37977820

ABSTRACT

Mammalian meiotic recombination proceeds via repair of hundreds of programmed DNA double-strand breaks, which requires choreographed binding of RPA, DMC1, and RAD51 to single-stranded DNA substrates. High-resolution in vivo binding maps of these proteins provide insights into the underlying molecular mechanisms. When assayed in F1-hybrid mice, these maps can distinguish the broken chromosome from the chromosome used as template for repair, revealing more mechanistic detail and enabling the structure of the recombination intermediates to be inferred. By applying CRISPR-Cas9 mutagenesis directly on F1-hybrid embryos, we have extended this approach to explore the molecular detail of recombination when a key component is knocked out. As a proof of concept, we have generated hybrid biallelic knockouts of Dmc1 and built maps of meiotic binding of RAD51 and RPA in them. DMC1 is essential for meiotic recombination, and comparison of these maps with those from wild-type mice is informative about the structure and timing of critical recombination intermediates. We observe redistribution of RAD51 binding and complete abrogation of D-loop recombination intermediates at a molecular level in Dmc1 mutants. These data provide insight on the configuration of RPA in D-loop intermediates and suggest that stable strand exchange proceeds via multiple rounds of strand invasion with template switching in mouse. Our methodology provides a high-throughput approach for characterization of gene function in meiotic recombination at low animal cost.

2.
Science ; 382(6674): eadh2531, 2023 12.
Article in English | MEDLINE | ID: mdl-38033082

ABSTRACT

Meiotic recombination commences with hundreds of programmed DNA breaks; however, the degree to which they are accurately repaired remains poorly understood. We report that meiotic break repair is eightfold more mutagenic for single-base substitutions than was previously understood, leading to de novo mutation in one in four sperm and one in 12 eggs. Its impact on indels and structural variants is even higher, with 100- to 1300-fold increases in rates per break. We uncovered new mutational signatures and footprints relative to break sites, which implicate unexpected biochemical processes and error-prone DNA repair mechanisms, including translesion synthesis and end joining in meiotic break repair. We provide evidence that these mechanisms drive mutagenesis in human germ lines and lead to disruption of hundreds of genes genome wide.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Genome, Human , Meiosis , Mutagenesis , Recombination, Genetic , Humans , Male , Meiosis/genetics , Mutation , Ovum/metabolism , Semen/metabolism , Translesion DNA Synthesis , Female
3.
Preprint in English | medRxiv | ID: ppmedrxiv-21260273

ABSTRACT

During March to June 2021 India has experienced a deadly second wave of COVID-19 with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason of these breakthroughs we collected 677 clinical samples (throat swab/ nasal swabs) of individuals who had received two doses (n=592) and one dose (n=85) of vaccines (Covishield and Covaxin,) and tested positive for COVID-19, from 17 states/Union Territories of country. These cases were telephonically interviewed and clinical data was analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both the cases. Analysis of both the cases determined that 86.69% (n=443) of them belonged to the Delta variant along with Alpha, Kappa, Delta AY.1 and Delta AY.2. The Delta variant clustered into 4 distinct sub-lineages. Sub-lineage-I had mutations: ORF1ab-A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, A6319V and N-G215C; Sub-lineage -II : ORF1ab- P309L, A3209V, V3718A, G5063S, P5401L and ORF7a-L116F; Sub-lineage -III : ORF1ab- A3209V, V3718A, T3750I, G5063S, P5401L and Spike-A222V; Sub-lineage -IV ORF1ab- P309L, D2980N, F3138S and spike - K77T. This study indicated that majority of the clinical cases in the breakthrough were infected with the Delta variant and only 9.8% cases required hospitalization while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.

4.
Annu Rev Genomics Hum Genet ; 22: 171-197, 2021 08 31.
Article in English | MEDLINE | ID: mdl-33722077

ABSTRACT

Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.


Subject(s)
Genome , Genomics , DNA , Humans , RNA , Sequence Analysis, DNA
5.
Mol Cell ; 79(4): 689-701.e10, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32610038

ABSTRACT

Meiotic recombination proceeds via binding of RPA, RAD51, and DMC1 to single-stranded DNA (ssDNA) substrates created after formation of programmed DNA double-strand breaks. Here we report high-resolution in vivo maps of RPA and RAD51 in meiosis, mapping their binding locations and lifespans to individual homologous chromosomes using a genetically engineered hybrid mouse. Together with high-resolution microscopy and DMC1 binding maps, we show that DMC1 and RAD51 have distinct spatial localization on ssDNA: DMC1 binds near the break site, and RAD51 binds away from it. We characterize inter-homolog recombination intermediates bound by RPA in vivo, with properties expected for the critical displacement loop (D-loop) intermediates. These data support the hypothesis that DMC1, not RAD51, performs strand exchange in mammalian meiosis. RPA-bound D-loops can be resolved as crossovers or non-crossovers, but crossover-destined D-loops may have longer lifespans. D-loops resemble crossover gene conversions in size, but their extent is similar in both repair pathways.


Subject(s)
Cell Cycle Proteins/metabolism , Homologous Recombination , Meiosis , Phosphate-Binding Proteins/metabolism , Rad51 Recombinase/metabolism , Replication Protein A/metabolism , Animals , Cell Cycle Proteins/genetics , Chromosomes/genetics , Chromosomes/metabolism , Crossing Over, Genetic , DNA, Single-Stranded/metabolism , Genome , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Phosphate-Binding Proteins/genetics , Rad51 Recombinase/genetics , Replication Protein A/genetics , Testis
6.
Genes Dev ; 34(11-12): 806-818, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32354835

ABSTRACT

Exonucleolytic resection, critical to repair double-strand breaks (DSBs) by recombination, is not well understood, particularly in mammalian meiosis. Here, we define structures of resected DSBs in mouse spermatocytes genome-wide at nucleotide resolution. Resection tracts averaged 1100 nt, but with substantial fine-scale heterogeneity at individual hot spots. Surprisingly, EXO1 is not the major 5' → 3' exonuclease, but the DSB-responsive kinase ATM proved a key regulator of both initiation and extension of resection. In wild type, apparent intermolecular recombination intermediates clustered near to but offset from DSB positions, consistent with joint molecules with incompletely invaded 3' ends. Finally, we provide evidence for PRDM9-dependent chromatin remodeling leading to increased accessibility at recombination sites. Our findings give insight into the mechanisms of DSB processing and repair in meiotic chromatin.


Subject(s)
DNA Repair/physiology , Meiosis , Animals , Chromatin/chemistry , Chromatin/metabolism , DNA/chemistry , DNA Breaks, Double-Stranded , Histone-Lysine N-Methyltransferase/metabolism , Mice , Molecular Structure , Recombination, Genetic
7.
Science ; 363(6433)2019 03 22.
Article in English | MEDLINE | ID: mdl-30898902

ABSTRACT

Recombination is critical to meiosis and evolution, yet many aspects of the physical exchange of DNA via crossovers remain poorly understood. We report an approach for single-cell whole-genome DNA sequencing by which we sequenced 217 individual hybrid mouse sperm, providing a kilobase-resolution genome-wide map of crossovers. Combining this map with molecular assays measuring stages of recombination, we identified factors that affect crossover probability, including PRDM9 binding on the non-initiating template homolog and telomere proximity. These factors also influence the time for sites of recombination-initiating DNA double-strand breaks to find and engage their homologs, with rapidly engaging sites more likely to form crossovers. We show that chromatin environment on the template homolog affects positioning of crossover breakpoints. Our results also offer insights into recombination in the pseudoautosomal region.


Subject(s)
Crossing Over, Genetic , Meiosis/genetics , Pseudoautosomal Regions/genetics , Spermatozoa/cytology , Animals , Chromatin/metabolism , DNA Breaks, Double-Stranded , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Mice, Inbred C57BL , Single-Cell Analysis , Telomere , Whole Genome Sequencing
8.
Nature ; 530(7589): 171-176, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26840484

ABSTRACT

The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.


Subject(s)
Genetic Speciation , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Hybridization, Genetic/genetics , Infertility/genetics , Protein Engineering , Zinc Fingers/genetics , Alleles , Animals , Binding Sites , Chromosome Pairing/genetics , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , DNA Breaks, Double-Stranded , Female , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Meiosis/genetics , Mice , Mice, Inbred C57BL , Protein Binding , Protein Structure, Tertiary/genetics , Recombination, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...