Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 197: 111448, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33181388

ABSTRACT

Hidradenitis suppurativa is a chronic and debilitating inflammatory condition related to a permanent obstruction of the pilosebaceous units. Until nowadays, therapeutic options are unsatisfactory. Here, we propose nanostructured lipid carriers (NLC) entrapping an association of clindamycin phosphate (CDM) and rifampicin (RIF) as a topical alternative for the treatment of the disease. Chemical compatibility between the drugs was demonstrated using thermal analysis combined with ATR-FTIR and X-ray powder diffraction assays. Nanocarriers' diameter was narrowly distributed (polydispersity index = 0.2) around 400 ± 14 nm, they possess a negative surface charge (-48.9 ± 0.7 mV) and high drug entrapment efficiencies (80.2 ± 0.4 % and 93.4 ± 0.7 % for CDM and RIF, respectively). The formulation proved to be safe for the topical application, as it was non-irritant on both HET-CAM and reconstructed human epidermis (RHE) assays. Spin-label EPR indicated an NLC affinity for the lipidic domains of stratum corneum, which could benefit the targeting of the sebaceous units. Indeed, when applied on the skin in vitro, even when mimicking the sebaceous condition, NLC accumulated into the hair follicles openings, not altering the amount of accumulated CDM and significantly increasing by 12-fold the uptake of RIF in these structures. In conclusion, developed NLC formulation incorporating the antibiotics CDM and RIF is a promising strategy for the topical treatment of hidradenitis suppurativa or other infections that may affect the pilosebaceous units.


Subject(s)
Clindamycin , Hidradenitis Suppurativa , Drug Carriers , Hair Follicle , Hidradenitis Suppurativa/drug therapy , Humans , Lipids , Rifampin , Skin Absorption
2.
Int J Pharm ; 576: 118991, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31884059

ABSTRACT

Strategies to enhance corneal penetration of voriconazole (VOR) could improve the treatment of fungal keratitis. Here, we evaluated the use of iontophoresis for ocular VOR delivery from either: (i) a cyclodextrin inclusion complex (CD VOR), (ii) a liposome (LP VOR), and (iii) a chitosan-coated liposome (LP VOR CS). LP VOR CS presented mean diameter of 139.2 ±â€¯1.3 nm and zeta potential equal to + 3.3 ±â€¯1.5 mV compared to 134.6 ±â€¯1.7 and -8.2 ±â€¯3.0 mV of LP VOR, which, together with mucin mucoadhesion study, confirmed chitosan-coating. Both drug and liposomal formulations were stable under the influence of an applied electric current. Interestingly, in vitro studies in Candida glabrata culture indicated a decrease in VOR MIC values following iontophoresis (from 0.28 to 0.14 µg/mL). Iontophoresis enhanced drug penetration into the cornea. After 10 min of a 2 mA/cm2 applied current, corneal retained amounts were 45.4 ±â€¯11.2, 30.4 ±â€¯2.1 and 30.6 ±â€¯2.9 µg/cm2 for, respectively, CD VOR, LP VOR, and LP VOR CS. In conclusion, iontophoresis increases drug potency and enhances drug penetration into the cornea, showing potential to be used as "an emergency burst delivery approach".


Subject(s)
Antifungal Agents/administration & dosage , Candida glabrata/drug effects , Cornea/metabolism , Iontophoresis , Voriconazole/administration & dosage , Administration, Ophthalmic , Animals , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Candida glabrata/growth & development , Chitosan/chemistry , Cyclodextrins/chemistry , Drug Compounding , Lipids/chemistry , Liposomes , Microbial Sensitivity Tests , Nanoparticles , Sus scrofa , Tissue Distribution , Voriconazole/chemistry , Voriconazole/metabolism
3.
J Nanosci Nanotechnol ; 15(1): 838-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328448

ABSTRACT

Liposomes containing 4-nerolidylcatechol (4-NC), the major metabolite isolated from Pothomorphe umbellata, were obtained and characterized. Influence of liposomal encapsulation on chemical stability of 4-NC and on cytotoxicity profile of this drug was evaluated. Soybean phosphatidylcholine liposomes were prepared by lipid film hydration followed by extrusion. Entrapment efficiency for 4-NC was approximately 92%. Mean diameter of liposomes was 100 nm with a polydispersity index below 0.13. Liposomal 4-NC (L4-NC) and free drug (F4-NC) were submitted to forced degradation assays, monitored by HPLC. Photodegradation assay followed ICH Guidelines, using a photostability chamber equipped with both UV and white light sources. Liposomal encapsulation was able to markedly reduce 4-NC degradation rates under all the conditions tested. L4-NC showed a half-live approximately 15% higher than F4-NC under light exposure. After 72 hours, acid and base hydrolysis of F4-NC lead to 13 and 16% of degradation, respectively. However, no degradation was observed in L4-NC. EPR spectra of liposomal membrane showed that greatest changes in membrane properties were obtained when 5-doxyl stearic acid was used as the spin label, indicating a marked decrease in the fluidity of the bilayer. Following incubation with K562 cells, 4-NC showed a concentration-dependent cytotoxicity profile, while L4-NC exhibited a time and concentration-dependent profile, consistent with a controlled drug release system. F4-NC induced extensive hemolysis under isotonic conditions; conversely liposomal encapsulation protected erythrocytes from 4-NC induced lysis. Liposomal 4-NC resulted in a hemocompatibility and stable formulation, representing a viable drug delivery system to further investigate in vivo performances of 4-NC in pre clinical studies.


Subject(s)
Catechols/chemistry , Catechols/pharmacology , Lipid Bilayers/chemistry , Liposomes/chemistry , Protective Agents/chemistry , Protective Agents/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Stability , Erythrocytes , Hemolysis/drug effects , Humans , Lipid Bilayers/metabolism , Liposomes/toxicity , Mice , Nanoparticles/chemistry , Particle Size
4.
Toxicol In Vitro ; 27(1): 323-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22944593

ABSTRACT

Terpenes are considered potent skin permeation enhancers with low toxicity. Electron paramagnetic resonance (EPR) spectroscopy of the spin label 5-doxyl stearic acid (5-DSA) was used to monitor the effect of sesquiterpene nerolidol and various monoterpenes on membrane fluidity in erythrocyte and fibroblast cells. In addition, the hemolytic levels and cytotoxic effects on cultured fibroblast cells were also measured to investigate possible relationships between the cellular irritation potentials of terpenes and the ability to modify membrane fluidity. All terpenes increased cell membrane fluidity with no significant differences between the monoterpenes, but the effect of sesquiterpene was significantly greater than that of the monoterpenes. The IC(50) values for the terpenes in the cytotoxicity assay indicated that 1,8-cineole showed lower cytotoxicity and α-terpineol and nerolidol showed higher cytotoxicity. The correlation between the hemolytic effect and the IC(50) values for fibroblast viability was low (R=0.61); however, in both tests, nerolidol was among the most aggressive of terpenes and 1,8-cineole was among the least aggressive. Obtaining information concerning the toxicity and potency of terpenes could aid in the design of topical formulations optimized to facilitate drug absorption for the treatment of many skin diseases.


Subject(s)
BALB 3T3 Cells/drug effects , Terpenes/toxicity , Animals , BALB 3T3 Cells/physiology , Erythrocyte Membrane/drug effects , Hemolysis/drug effects , Membrane Fluidity/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...