Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 240(5): 1131-1142, 2023 May.
Article in English | MEDLINE | ID: mdl-36964320

ABSTRACT

OBJECTIVE AND METHODS: We investigated the locomotor, emotional, physiological, and neurobiological effects induced by low-dose reserpine repeated treatment (0.1 mg/kg; 14 injections) in males from the Lewis (LEW), Spontaneously Hypertensive Rats (SHR), and SHR.LEW-(D4Rat76-D4Mgh11) (SLA16) isogenic rat strains, which have different genetic backgrounds on chromosome 4. Behavioral responses in the catalepsy, open-field, and oral movements' tests were coupled with blood pressure, body weight, and striatal tyrosine hydroxylase (TH) level assessments to establish neurobiological comparisons between reserpine-induced impairments and genetic backgrounds RESULTS: Results revealed the SHR strain was more sensitive in the catalepsy test and exhibited higher TH immunoreactivity in the dorsal striatum. The SLA16 strain presented more oral movements, suggesting increased susceptibility to develop oral dyskinesia. CONCLUSIONS: Our results showed the efficacy of repeated treatment with a low dose of reserpine and demonstrated, for the first time, the genetic influence of a specific region of chromosome 4 on the expression of these effects.


Subject(s)
Parkinsonian Disorders , Reserpine , Male , Rats , Animals , Reserpine/toxicity , Catalepsy , Behavior, Animal , Rats, Inbred Lew , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Rats, Inbred SHR
2.
Alcohol ; 102: 1-10, 2022 08.
Article in English | MEDLINE | ID: mdl-35500756

ABSTRACT

The Spontaneously Hypertensive Rats (SHR) strain was developed through selective breeding for high systolic blood pressure. In our laboratory, we established a congenic rat strain named SHR.Lewis-Anxrr16 (SLA16). The SLA16 rat strain is genetically identical to the SHR except for the inserted Anxrr16 region in chromosome 4. Our objective was to evaluate the influence of this genomic region on ethanol consumption and blood pressure. First, we exposed SHR and SLA16 male and female rats to ethanol consumption. Results showed that, regardless of strain, females consumed more ethanol than males during forced (10% v/v) and spontaneous ethanol consumption (SEC; 2.5-20% v/v). Then, females from both strains were used to evaluate sensitivity to ethanol. No strain differences in the loss of righting reflex were observed after ethanol treatment (3 g/kg, 20% w/v, intraperitoneal [i.p.]). But, in the triple test, female SHR rats presented lower sensitivity to the ethanol (1.2 g/kg, 14% w/v, i.p.). Surprisingly, female SHR rats also presented higher blood pressure after SEC (10% v/v). Finally, losartan treatment was effective in decreasing the blood pressure of female rats of both strains, but had specific effects on SHR ethanol consumption. Our data suggest that SLA16 female rats consume less ethanol (10%), are more sensitive to its effects, and present lower blood pressure than SHR female rats. We demonstrated that the Anxrr16 locus in chromosome 4 is a genetic candidate to explain high ethanol consumption and blood pressure, at least in females.


Subject(s)
Chromosomes, Human, Pair 4 , Hypertension , Animals , Blood Pressure/genetics , Ethanol , Female , Humans , Hypertension/genetics , Male , Rats , Rats, Inbred Lew , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...