Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893673

ABSTRACT

Spreading quickly throughout populations, whether animal or human-borne, infectious illnesses provide serious risks and difficulties. Controlling their spread and averting disinformation requires effective risk assessment and epidemic identification. Technology-enabled data analysis on diseases allows for quick solutions to these problems. A Combinational Data Assessment Scheme intended to accelerate disease detection is presented in this paper. The suggested strategy avoids duplicate data replication by sharing data among edge devices. It uses indexed data gathering to improve early detection by using tree classifiers to discern between various kinds of information. Both data similarity and index measurements are considered throughout the data analysis stage to minimize assessment errors. Accurate risk detection and assessment based on information kind and sharing frequency are ensured by comparing non-linear accumulations with accurate shared edge data. The suggested system exhibits high accuracy, low mistakes, and decreased data repetition to improve overall effectiveness in illness detection and risk reduction.

2.
Bioengineering (Basel) ; 11(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927776

ABSTRACT

There is a significant public health concern regarding medical diagnosis errors, which are a major cause of mortality. Identifying the root cause of these errors is challenging, and even if one is identified, implementing an effective treatment to prevent their recurrence is difficult. Optimization-based analysis in healthcare data management is a reliable method for improving diagnostic precision. Analyzing healthcare data requires pre-classification and the identification of precise information for precision-oriented outcomes. This article introduces a Cooperative-Trivial State Fuzzy Processing method for significant data analysis with possible derivatives. Trivial State Fuzzy Processing operates on the principle of fuzzy logic-based processing applied to structured healthcare data, focusing on mitigating errors and uncertainties inherent in the data. The derivatives are aided by identifying and grouping diagnosis-related and irrelevant data. The proposed method mitigates invertible derivative analysis issues in similar data grouping and irrelevance estimation. In the grouping and detection process, recent knowledge of the diagnosis progression is exploited to identify the functional data for analysis. Such analysis improves the impact of trivial diagnosis data compared to a voluminous diagnosis history. The cooperative derivative states under different data irrelevance factors reduce trivial state errors in healthcare big data analysis.

3.
Diagnostics (Basel) ; 13(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37761234

ABSTRACT

Arrhythmia is a cardiac condition characterized by an irregular heart rhythm that hinders the proper circulation of blood, posing a severe risk to individuals' lives. Globally, arrhythmias are recognized as a significant health concern, accounting for nearly 12 percent of all deaths. As a result, there has been a growing focus on utilizing artificial intelligence for the detection and classification of abnormal heartbeats. In recent years, self-operated heartbeat detection research has gained popularity due to its cost-effectiveness and potential for expediting therapy for individuals at risk of arrhythmias. However, building an efficient automatic heartbeat monitoring approach for arrhythmia identification and classification comes with several significant challenges. These challenges include addressing issues related to data quality, determining the range for heart rate segmentation, managing data imbalance difficulties, handling intra- and inter-patient variations, distinguishing supraventricular irregular heartbeats from regular heartbeats, and ensuring model interpretability. In this study, we propose the Reseek-Arrhythmia model, which leverages deep learning techniques to automatically detect and classify heart arrhythmia diseases. The model combines different convolutional blocks and identity blocks, along with essential components such as convolution layers, batch normalization layers, and activation layers. To train and evaluate the model, we utilized the MIT-BIH and PTB datasets. Remarkably, the proposed model achieves outstanding performance with an accuracy of 99.35% and 93.50% and an acceptable loss of 0.688 and 0.2564, respectively.

4.
Diagnostics (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627896

ABSTRACT

Lower extremity diabetic foot ulcers (DFUs) are a severe consequence of diabetes mellitus (DM). It has been estimated that people with diabetes have a 15% to 25% lifetime risk of acquiring DFUs which leads to the risk of lower limb amputations up to 85% due to poor diagnosis and treatment. Diabetic foot develops planter ulcers where thermography is used to detect the changes in the planter temperature. In this study, publicly available thermographic image data including both control group and diabetic group patients are used. Thermograms at image level as well as patch level are utilized for DFU detection. For DFU recognition, several machine-learning-based classification approaches are employed with hand-crafted features. Moreover, a couple of convolutional neural network models including ResNet50 and DenseNet121 are evaluated for DFU recognition. Finally, a CNN-based custom-developed model is proposed for the recognition task. The results are produced using image-level data, patch-level data, and image-patch combination data. The proposed CNN-based model outperformed the utilized models as well as the state-of-the-art models in terms of the AUC and accuracy. Moreover, the recognition accuracy for both the machine-learning and deep-learning approaches was higher for the image-level thermogram data in comparison to the patch-level or combination of image-patch thermograms.

5.
Heliyon ; 9(8): e18783, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576207

ABSTRACT

Wearable Sensors (WSs) are widely used in healthcare applications to monitor patient health. During the data transmission, dissemination requires additional time to transmit the details with minimum computation difficulties. The existing techniques consume high overloaded while transmitting data in healthcare applications. The research problem is overcome by applying the non-delay-tolerant dissemination technique (NDTDT) to prevent overloaded dissemination and augment immediate, swift message delivery. The dissemination techniques utilize the intelligent decision-making process to provide the accumulated details to the healthcare center. The proposed approach is reliable in mitigating the errors due to inconsistent and discrete sensing intervals between the WSs. The constraints due to delay and interrupted transmission losses are reduced by selecting appropriate slots for WS information handling. This technique aims at maximizing the delivery of accumulated WS information through non-submissive or underlay dissemination. The method is designed to reduce dissemination delay and maximize successful message delivery. Two variations, sensors and data flows, validate the proposed NDTDT system's performance. The model increases the delivery rate by 0.91% and 0.932%, the dissemination probability by 0.964% and 0.98%, and the final metrics involved are an average delay of 12.78 ms and 11.67 ms.

6.
Diagnostics (Basel) ; 13(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36900031

ABSTRACT

Neurodegenerative diseases are a group of conditions that involve the progressive loss of function of neurons in the brain and spinal cord. These conditions can result in a wide range of symptoms, such as difficulty with movement, speech, and cognition. The causes of neurodegenerative diseases are poorly understood, but many factors are believed to contribute to the development of these conditions. The most important risk factors include ageing, genetics, abnormal medical conditions, toxins, and environmental exposures. A slow decline in visible cognitive functions characterises the progression of these diseases. If left unattended or unnoticed, disease progression can result in serious issues such as the cessation of motor function or even paralysis. Therefore, early recognition of neurodegenerative diseases is becoming increasingly important in modern healthcare. Many sophisticated artificial intelligence technologies are incorporated into modern healthcare systems for the early recognition of these diseases. This research article introduces a Syndrome-dependent Pattern Recognition Method for the early detection and progression monitoring of neurodegenerative diseases. The proposed method determines the variance between normal and abnormal intrinsic neural connectivity data. The observed data is combined with previous and healthy function examination data to identify the variance. In this combined analysis, deep recurrent learning is exploited by tuning the analysis layer based on variance suppressed by identifying normal and abnormal patterns in the combined analysis. This variance from different patterns is recurrently used to train the learning model for maximising of recognition accuracy. The proposed method achieves 16.77% high accuracy, 10.55% high precision, and 7.69% high pattern verification. It reduces the variance and verification time by 12.08% and 12.02%, respectively.

7.
Diagnostics (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832260

ABSTRACT

Detecting brain disorders using deep learning methods has received much hype during the last few years. Increased depth leads to more computational efficiency, accuracy, and optimization and less loss. Epilepsy is one of the most common chronic neurological disorders characterized by repeated seizures. We have developed a deep learning model using Deep convolutional Autoencoder-Bidirectional Long Short Memory for Epileptic Seizure Detection (DCAE-ESD-Bi-LSTM) for automatic detection of seizures using EEG data. The significant feature of our model is that it has contributed to the accurate and optimized diagnosis of epilepsy in ideal and real-life situations. The results on the benchmark (CHB-MIT) dataset and the dataset collected by the authors show the relevance of the proposed approach over the baseline deep learning techniques by achieving an accuracy of 99.8%, classification accuracy of 99.7%, sensitivity of 99.8%, specificity and precision of 99.9% and F1 score of 99.6%. Our approach can contribute to the accurate and optimized detection of seizures while scaling the design rules and increasing performance without changing the network's depth.

SELECTION OF CITATIONS
SEARCH DETAIL
...