Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(1): 84-94, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28114762

ABSTRACT

We present a simple yet efficient method for orienting cellulose nanofibrils in layer-by-layer assembled films through spray-assisted alignment. While spraying at 90° against a receiving surface produces films with homogeneous in-plane orientation, spraying at smaller angles causes a macroscopic directional surface flow of liquid on the receiving surface and leads to films with substantial in-plane anisotropy when nanoscale objects with anisotropic shapes are used as components. First results with cellulose nanofibrils demonstrate that such fibrils are easily aligned by grazing incidence spraying to yield optically birefringent films over large surface areas. We show that the cellulosic nanofibrils are oriented parallel to the spraying direction and that the orientational order depends for example on the distance of the receiving surface from the spray nozzle. The alignment of the nanofibrils and the in-plane anisotropy of the films were independently confirmed by atomic force microscopy, optical microscopy between crossed polarizers, and the ellipsometric determination of the apparent refractive index of the film as a function of the in-plane rotation of the sample with respect to the plane of incidence of the ellipsometer.

2.
J Mater Chem B ; 1(6): 835-840, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-32260742

ABSTRACT

Several approaches have recently been shown for self-assembled biomimetic composite films, aiming at combinations of high toughness, strength, and stiffness. However, it remains challenging to achieve high toughness using simple processes especially for bulk materials. We demonstrate that ionically interacting cationic native nanofibrillated cellulose (C-NFC) and anionic nanoclay, i.e. montmorillonite (MTM), allow local self-assemblies by a simple centrifugation process to achieve 3D bulk materials. The composite with MTM/C-NFC of 63/37 w/w has a high compressive strain to failure of 37% with distinct plastic deformation behaviour, a high work to fracture of 23.1 MJ m-3, and a relatively high compression strength of 76 MPa. Unlike the conventionally used sequential deposition methods to achieve well-defined layers for the oppositely charged units as limited to films, the present one-step method allows quick formation of bulk materials and leads to local self-assemblies, however, having a considerable amount of nanovoids and defects between them. We suggest that the nanovoids and defects promote the plastic deformation and toughness. Considering the simple preparation method and bio-based origin of NFC, we expect that the present tough bulk nanocomposites in compression have potential in applications for sustainable and environmentally friendly materials in construction and transportation.

3.
ACS Nano ; 6(6): 4731-9, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22639847

ABSTRACT

The preparation of multifunctional films and coatings from sustainable, low-cost raw materials has attracted considerable interest during the past decade. In this respect, cellulose-based products possess great promise due not only to the availability of large amounts of cellulose in nature but also to the new classes of nanosized and well-characterized building blocks of cellulose being prepared from trees or annual plants. However, to fully utilize the inherent properties of these nanomaterials, facile and also sustainable preparation routes are needed. In this work, bioinspired hybrid conjugates of carboxymethylated cellulose nanofibrils (CNFC) and dopamine (DOPA) have been prepared and layer-by-layer (LbL) films of these modified nanofibrils have been built up in combination with a branched polyelectrolyte, polyethyleneimine (PEI), to obtain robust, adhesive, and wet-stable nanocoatings on solid surfaces. It is shown that the chemical functionalization of CNFCs with DOPA molecules alters their conventional properties both in liquid dispersion and at the interface and also influences the LbL film formation by reducing the electrostatic interaction. Although the CNFC-DOPA conjugates show a lower colloidal stability in aqueous dispersions due to charge suppression, it was possible to prepare the LbL films through the consecutive deposition of the building blocks. Adhesive forces between multilayer films prepared using chemically functionalized CNFCs and a silica probe are much stronger in the presence of Fe(3+) than those between a multilayer film prepared from unmodified nanofibrils and a silica probe. The present work demonstrates a facile way to prepare chemically functionalized cellulose nanofibrils whereby more extended applications can produce novel cellulose-based materials with different functionalities.


Subject(s)
Biomimetic Materials/chemistry , Bivalvia/chemistry , Cellulose/chemistry , Dopamine/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Adhesiveness , Animals , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Methylation , Molecular Conformation , Particle Size , Surface Properties
4.
Angew Chem Int Ed Engl ; 50(24): 5438-66, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21598362

ABSTRACT

Cellulose fibrils with widths in the nanometer range are nature-based materials with unique and potentially useful features. Most importantly, these novel nanocelluloses open up the strongly expanding fields of sustainable materials and nanocomposites, as well as medical and life-science devices, to the natural polymer cellulose. The nanodimensions of the structural elements result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles, and living cells. This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.


Subject(s)
Cellulose/chemistry , Nanostructures/chemistry , Biopolymers/chemistry , Biopolymers/metabolism , Cellulose/ultrastructure , Electrolytes/chemistry , Gluconacetobacter/metabolism , Hydrogels/chemistry , Nanostructures/ultrastructure
5.
Biomacromolecules ; 12(6): 2074-81, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21517114

ABSTRACT

We present a facile ionic assembly between fibrillar and spherical colloidal objects toward biomimetic nanocomposites with majority hard and minority soft domains based on anionic reinforcing native cellulose nanofibrils and cationic amphiphilic block copolymer micelles with rubbery core. The concept is based on ionic complexation of carboxymethylated nanofibrillated cellulose (NFC, or also denoted as microfibrillated cellulose, MFC) and micelles formed by aqueous self-assembly of quaternized poly(1,2-butadiene)-block-poly(dimethylaminoethyl methacrylate) with high fraction of the NFC reinforcement. The adsorption of block copolymer micelles onto nanocellulose is shown by quartz crystal microbalance measurements, atomic force microscopy imaging, and fluorescent optical microscopy. The physical properties are elucidated using electron microscopy, thermal analysis, and mechanical testing. The cationic part of the block copolymer serves as a binder to NFC, whereas the hydrophobic rubbery micellar cores are designed to facilitate energy dissipation and nanoscale lubrication between the NFC domains under deformation. We show that the mechanical properties do not follow the rule of mixtures, and synergistic effects are observed with promoted work of fracture in one composition. As the concept allows wide possibilities for tuning, the work suggests pathways for nanocellulose-based biomimetic nanocomposites combining high toughness with stiffness and strength.


Subject(s)
Biocompatible Materials/chemical synthesis , Biomimetic Materials/chemical synthesis , Cellulose/chemistry , Colloids/chemistry , Methacrylates/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Adsorption , Anions/chemistry , Anions/metabolism , Biocompatible Materials/metabolism , Biomimetic Materials/metabolism , Cations/chemistry , Cations/metabolism , Mechanics , Micelles , Microscopy, Atomic Force , Static Electricity , Tensile Strength , Water/chemistry
6.
Langmuir ; 24(3): 784-95, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18186655

ABSTRACT

A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown by transmission electron microscopy with a diameter of 5-15 nm and a length of up to 1 microm. Calculations, using the Poisson-Boltzmann equation, showed that the surface potential was between 200 and 250 mV, depending on the pH, the salt concentration, and the size of the fibrils. They also showed that the carboxyl groups on the surface of the nanofibrils are not fully dissociated until the pH has reached pH = approximately 10 in deionized water. Calculations of the interaction between the fibrils using the Derjaguin-Landau-Verwey-Overbeek theory and assuming a cylindrical geometry indicated that there is a large electrostatic repulsion between these fibrils, provided the carboxyl groups are dissociated. If the pH is too low and/or the salt concentration is too high, there will be a large attraction between the fibrils, leading to a rapid aggregation of the fibrils. It is also possible to form polyelectrolyte multilayers (PEMs) by combining different types of polyelectrolytes and microfibrillated cellulose (MFC). In this study, silicon oxide surfaces were first treated with cationic polyelectrolytes before the surfaces were exposed to MFC. The build-up of the layers was monitored with ellipsometry, and they show that it is possible to form very well-defined layers by combinations of MFC and different types of polyelectrolytes and different ionic strengths of the solutions during the adsorption of the polyelectrolyte. A polyelectrolyte with a three-dimensional structure leads to the build-up of thick layers of MFC, whereas the use of a highly charged linear polyelectrolyte leads to the formation of thinner layers of MFC. An increase in the salt concentration during the adsorption of the polyelectrolyte results in the formation of thicker layers of MFC, indicating that the structure of the adsorbed polyelectrolyte has a large influence on the formation of the MFC layer. The films of polyelectrolytes and MFC were so smooth and well-defined that they showed clearly different interference colors, depending on the film thickness. A comparison between the thickness of the films, as measured with ellipsometry, and the thickness estimated from their colors showed good agreement, assuming that the films consisted mainly of solid cellulose with a refractive index of 1.53. Carboxymethylated MFC is thus a new type of nanomaterial that can be combined with oppositely charged polyelectrolytes to form well-defined layers that may be used to form, for example, new types of sensor materials.

7.
Biomacromolecules ; 8(8): 2398-403, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17645308

ABSTRACT

This report presents a new route to enhance the wet properties of chitosan-acetic-acid-salt films using microfibrillated cellulose (MFC). The enhancement makes it easier to form chitosan-acetic-acid-salt films into various shapes at room temperature in the wet state. Chitosan with MFC was compared with the well-known buffer treatment. It was observed that films containing 5 wt % MFC were visually identical to the buffered/unbuffered films without MFC. Field-emission scanning electron microscopy indicated that MFC formed a network with uniformly distributed fibrils and fibril bundles in the chitosan matrix. The addition of MFC reduced the risk of creases and deformation in the wet state because of a greater wet stiffness. The wet films containing MFC were also extensible. Although the stiffness, strength and extensibility were highest for the buffered films, the wet strength of the MFC-containing unbuffered films was sufficient for wet forming operations. The effects of MFC on the mechanical properties of the dry chitosan films were small or absent. It was concluded that the addition of MFC is an acceptable alternative to buffering for shaping chitosan films/products in the wet state. The advantages are that the "extra" processing step associated with buffering is unnecessary and that the film matrix remains more water-soluble.


Subject(s)
Acetic Acid/chemistry , Biocompatible Materials/chemistry , Cellulose/chemistry , Chitosan/chemistry , Cellulose/ultrastructure , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...