Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769338

ABSTRACT

Estrogens have important roles in endometrial cancer (EC) and exert biological effects through the classical estrogen receptors (ERs) ERα and ERß, and the G-protein-coupled ER, GPER. So far, the co-expression of these three types of ERs has not been studied in EC. We investigated ERα, ERß, GPER mRNA and protein levels, and their intracellular protein distributions in EC tissue and in adjacent control endometrial tissue. Compared to control endometrial tissue, immunoreactivity for ERα in EC tissue was weaker for nuclei with minor, but unchanged, cytoplasmic staining; mRNA and protein levels showed decreased patterns for ERα in EC tissue. For ERß, across both tissue types, the immunoreactivity was unchanged for nuclei and cytoplasm, although EC tissues again showed lower mRNA and protein levels compared to adjacent control endometrial tissue. The immunoreactivity of GPER as well as mRNA levels of GPER were unchanged across cancer and control endometrial tissues, while protein levels were lower in EC tissue. Statistically significant correlations of estrogen receptor α (ESR1) versus estrogen receptor ß (ESR2) and GPER variant 3,4 versus ESR1 and ESR2 was seen at the mRNA level. At the protein level studied with Western blotting, there was significant correlation of ERα versus GPER, and ERß versus GPER. While in clinical practice the expression of ERα is routinely tested in EC tissue, ERß and GPER need to be further studied to examine their potential as prognostic markers, provided that specific and validated antibodies are available.


Subject(s)
Endometrial Neoplasms , Receptors, Estrogen , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , RNA, Messenger/genetics
2.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917029

ABSTRACT

Endometrial cancer (EC) is associated with increased estrogen actions. Locally, estrogens can be formed from estrone-sulphate (E1-S) after cellular uptake by organic anion-transporting polypeptides (OATP) or organic anion transporters (OAT). Efflux of E1-S is enabled by ATP Binding Cassette transporters (ABC) and organic solute transporter (OST)αß. Currently, 19 E1-S transporters are known but their roles in EC are not yet understood. Here, we analysed levels of E1-S transporters in Ishikawa (premenopausal EC), HEC-1-A (postmenopausal EC), HIEEC (control) cell lines, in EC tissue, examined metabolism of steroid precursor E1-S, studied effects of OATPs' inhibition and gene-silencing on E1-S uptake, and assessed associations between transporters and histopathological data. Results revealed enhanced E1-S metabolism in HEC-1-A versus Ishikawa which could be explained by higher levels of OATPs in HEC-1-A versus Ishikawa, especially 6.3-fold up-regulation of OATP1B3 (SLCO1B3), as also confirmed by immunocytochemical staining and gene silencing studies, lower ABCG2 expression and higher levels of sulfatase (STS). In EC versus adjacent control tissue the highest differences were seen for ABCG2 and SLC51B (OSTß) which were 3.0-fold and 2.1-fold down-regulated, respectively. Immunohistochemistry confirmed lower levels of these two transporters in EC versus adjacent control tissue. Further analysis of histopathological data indicated that SLCO1B3 might be important for uptake of E1-S in tumours without lymphovascular invasion where it was 15.6-fold up-regulated as compared to adjacent control tissue. Our results clearly indicate the importance of E1-S transporters in EC pathophysiology and provide a base for further studies towards development of targeted treatment.


Subject(s)
Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Estrone/analogs & derivatives , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Age Factors , Biological Transport , Cell Line, Tumor , Endometrial Neoplasms/pathology , Estrone/metabolism , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multigene Family , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Staging , Postmenopause , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
3.
Int J Pharm ; 564: 106-116, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30999044

ABSTRACT

Crystalline bulking agent in lyophilized biopharmaceutical formulations provides an elegant lyophilized cake structure and allows aggressive primary drying conditions. The interplay between amorphous and crystalline state of excipients heavily influence the stability of lyophilized biological products and should be carefully evaluated in the formulation and process development phase. This study focuses on: (1) elucidating the influence of formulation and lyophilization process variables on the formation of different states of mannitol and (2) its impact on model monoclonal antibody stability when compared to sucrose. The main aim of the present research work was to study the influence of different mannitol to sucrose ratios and monoclonal antibody concentrations on mannitol physical form established during lyophilization. In addition, also the effect of process variables on mannitol hemihydrate (MHH) formation was under investigation. Thermal analysis and powder X-ray diffraction results revealed that the ratio between sucrose and mannitol and mAb concentration have a decisive impact on mannitol crystallization. Namely, increasing amount of mannitol and monoclonal antibody resulted in decreasing formation of MHH. From the process parameters investigated, a higher secondary drying temperature has the biggest impact on the complete dehydration of MHH. Specifically, higher secondary drying temperature reflected in complete dehydration of MHH. Annealing temperature was shown to affect the MHH content in the final product, wherein the higher annealing temperature was preferential for formation of anhydrous mannitol. Temperature stress stability study revealed that the most important parameter influencing monoclonal antibody stability is the ratio of protein to sucrose. Contrary to widespread assumption, we did not detect any impact of MHH on the stability of the investigated monoclonal antibody.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Mannitol/chemistry , Sucrose/chemistry , Drug Stability , Freeze Drying , Protein Stability , Temperature
4.
Front Pharmacol ; 8: 368, 2017.
Article in English | MEDLINE | ID: mdl-28690541

ABSTRACT

Endometrial cancer (EC) is the most common estrogen-dependent gynecological malignancy in the developed World. To investigate the local formation of estradiol (E2), we first measured the concentrations of the steroid precursor androstenedione (A-dione) and the most potent estrogen, E2, and we evaluated the metabolism of A-dione, estrone-sulfate (E1-S), and estrone (E1) in cancerous and adjacent control endometrium. Furthermore, we studied expression of the key genes for estradiol formation via the aromatase and sulfatase pathways. A-dione and E2 were detected in cancerous and adjacent control endometrium. In cancerous endometrium, A-dione was metabolized to testosterone, and no E2 was formed. Both, E1-S and E1 were metabolized to E2, with increased levels of E2 seen in cancerous tissue. There was no significant difference in expression of the key genes of the aromatase (CYP19A1) and the sulfatase (STS, HSD17B1, HSD17B2) pathways in cancerous endometrium compared to adjacent control tissue. The mRNA levels of CYP19A1 and HSD17B1 were low, and HSD17B14, which promotes inactivation of E2, was significantly down-regulated in cancerous endometrium, especially in patients with lymphovascular invasion. At the protein level, there were no differences in the levels of STS and HSD17B2 between cancerous and adjacent control tissue by Western blotting, and immunohistochemistry revealed intense staining for STS and HSD17B2, and weak staining for SULT1E1 and HSD17B1 in cancerous tissue. Our data demonstrate that in cancerous endometrium, E2 is formed from E1-S via the sulfatase pathway, and not from A-dione via the aromatase pathway.

5.
Dalton Trans ; 45(29): 11791-800, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27357845

ABSTRACT

Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.


Subject(s)
Aldo-Keto Reductases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Thiones/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Humans , MCF-7 Cells , Pyridines/chemistry , Ruthenium/chemistry , Thiones/chemistry
6.
Chem Biol Interact ; 234: 297-308, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25463305

ABSTRACT

Endometrial cancer is the most frequently diagnosed gynecological malignancy. It is associated with prolonged exposure to estrogens that is unopposed by progesterone, whereby enhanced metabolism of progesterone may decrease its protective effects, as it can deprive progesterone receptors of their active ligand. Furthermore, the 5α-pregnane metabolites formed can stimulate proliferation and may thus contribute to carcinogenesis. The aims of our study were to: (1) identify and quantify progesterone metabolites formed in the HEC-1A and Ishikawa model cell lines of endometrial cancer; and (2) pinpoint the enzymes involved in progesterone metabolism, and delineate their roles. Progesterone metabolism studies combined with liquid chromatography-tandem mass spectrometry enabled identification and quantification of the metabolites formed in these cells. Further quantitative PCR analysis and small-interfering-RNA-mediated gene silencing identified individual progesterone metabolizing enzymes and their relevant roles. In Ishikawa and HEC-1A cells, progesterone was metabolized mainly to 20α-hydroxy-pregn-4-ene-3-one, 20α-hydroxy-5α-pregnane-3-one, and 5α-pregnane-3α/ß,20α-diol. The major difference between these cell lines was rate of progesterone metabolism, which was faster in HEC-1A cells. In the Ishikawa and HEC-1A cells, expression of AKR1C2 was 110-fold and 6800-fold greater, respectively, than expression of AKR1C1, which suggests that 20-ketosteroid reduction of 5α-pregnanes and 4-pregnenes is catalyzed mainly by AKR1C2. AKR1C1/AKR1C2 gene silencing showed decreased progesterone metabolism in both cell lines, thus further supporting the significant role of AKR1C2. SRD5A1 was also expressed in these cells, and its silencing confirmed that 5α-reduction is catalyzed by 5α-reductase type 1. Silencing of SRD5A1 also had the most pronounced effects, with decreased rate of progesterone metabolism, and consequently higher concentrations of unmetabolized progesterone. Our data confirm that in model cell lines of endometrial cancer, AKR1C2 and SRD5A1 have crucial roles in progesterone metabolism, and may represent novel targets for treatment.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Endometrial Neoplasms/metabolism , Hydroxysteroid Dehydrogenases/metabolism , Membrane Proteins/metabolism , Progesterone/metabolism , Cell Line, Tumor , Female , Humans , Ketosteroids/metabolism , Pregnanes/metabolism
7.
Chem Biol Interact ; 234: 320-31, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25446850

ABSTRACT

Endometriosis is a frequent benign gynecological disease characterized by endometrial tissue outside the uterine cavity. The estimated prevalence in the general population is 6-10%, but this reaches 30-50% in women with infertility and/or pain. As ectopic tissue within the pelvic cavity provokes inflammation, endometriosis is also considered a chronic inflammatory disease, and is characterized by increased peritoneal fluid levels of prostaglandin (PG)E2 and PGF2α. The AKR1B1 and AKR1C3 enzymes act as PG synthases and catalyze reduction of PGH2 to PGF2α, and PGD2 to 9α,11ß-PGF2α, respectively. AKR1B1 and AKR1C3 may thus be associated with increased PGF2α production in endometriosis patients, as supported by our previous report of increased AKR1C1-AKR1C3 mRNA levels in endometriotic tissue, compared to control endometrium. Here, we initially evaluated PGF2α concentrations in peritoneal fluid from endometriosis patients and healthy women. We also examined expression of AKR1B1, AKR1C3 and other genes involved in PGF2α biosynthesis, metabolism, and action in ovarian endometriosis tissue versus healthy endometrium, and in peritoneal endometriosis and control endometrium model cell lines. Compared to controls, increased PGF2α concentrations in peritoneal fluid of patients were supported by endometriotic tissue showing increased AKR1B1 mRNA and protein levels, but unchanged AKR1C3 protein levels. Among genes involved in PGF2α biosynthesis, metabolism and action PLA2G2A, PTGS2/COX-2, ABCC4 and PTGFR were up-regulated, mRNA levels of SLCO2A, PTGDS and HPGDS were unchanged, and genes PLA2G4A and HPGD were down-regulated in diseased tissue. All of these PGF2α-associated genes were also expressed in control endometrial HIEEC epithelial and HIESC stromal cell lines, and in peritoneal endometriosis 12-Z epithelial and 22-B stromal cell lines. Higher expression of PLA2G2A, PTGS2, AKR1B1, AKR1C3 and ABCC4 was seen in 22-B endometriosis cells compared to HIESC control cells. These cell models characterized in this study will enable further investigations into the role of PGF2α in the pathophysiology of endometriosis and the involvement of AKR1B1 and AKR1C3.


Subject(s)
3-Hydroxysteroid Dehydrogenases/genetics , Aldehyde Reductase/genetics , Dinoprost/biosynthesis , Dinoprost/genetics , Endometriosis/genetics , Hydroxyprostaglandin Dehydrogenases/genetics , Ovary/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Adult , Aldehyde Reductase/metabolism , Aldo-Keto Reductase Family 1 Member C3 , Case-Control Studies , Cell Line , Down-Regulation/genetics , Endometriosis/metabolism , Endometrium/metabolism , Epithelial Cells/metabolism , Female , Humans , Hydroxyprostaglandin Dehydrogenases/metabolism , RNA, Messenger/genetics , Stromal Cells/metabolism
8.
Biochim Biophys Acta ; 1818(3): 915-24, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22240008

ABSTRACT

The PepFect family of cell-penetrating peptides (CPPs) was designed to improve the delivery of nucleic acids across plasma membranes. We present here a comparative study of two members of the family, PepFect3 (PF3) and PepFect6 (PF6), together with their parental CPP transportan-10 (TP10), and their interactions with lipid membranes. We show that the addition of a stearyl moiety to TP10 increases the amphipathicity of these molecules and their ability to insert into a lipid monolayer composed of zwitterionic phospholipids. The addition of negatively charged phospholipids into the monolayer results in decreased binding and insertion of the stearylated peptides, indicating modification in the balance of hydrophobic versus electrostatic interactions of peptides with lipid bilayer, thus revealing some clues for the selective interaction of these CPPs with different lipids. The trifluoromethylquinoline moieties, in PF6 make no significant contribution to membrane binding and insertion. TP10 actively introduces pores into the bilayers of large and giant unilamellar vesicles, while PF3 and PF6 do so only at higher concentrations. This is consistent with the lower toxicity of PF3 and PF6 observed in previous studies.


Subject(s)
Cell-Penetrating Peptides/chemistry , Galanin/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Quinolines/chemistry , Recombinant Fusion Proteins/chemistry , Unilamellar Liposomes/chemistry , Wasp Venoms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...