Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 27(38): 385201, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27514079

ABSTRACT

Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 µs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

2.
Phys Chem Chem Phys ; 15(32): 13506-12, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23824096

ABSTRACT

Understanding thermal behavior of metallic clusters on their solid supports is important for avoiding sintering and aggregation of the active supported metallic particles in heterogeneous catalysis. As a model system we have studied the diffusion of gold nano-clusters on modified Ru(0001) single crystal surfaces, employing surface density grating formation via a laser induced ablation technique. Surface modifications included damage induced by varying periods of Ne(+) ion sputtering at a collision energy of 2.8 keV and the effect of pre-adsorbed oxygen on the clean, defect free ruthenium surface. High density of surface damage, obtained at long sputter times, has led to enhanced diffusivity with lower onset temperature for diffusion. It is attributed to reduced cluster-surface commensurability which gives rise to smaller effective activation energy for diffusion. The diffusion of gold nano-clusters, 2 nm in size, was found to be insensitive to the oxygen surface concentration. The adsorbed oxygen acted as an "atomic layer lubricant", reducing friction between the cluster and the underlying surface. This has led to lower diffusivity onset temperatures (150 K) of the nano-clusters, with a stronger effect on smaller clusters.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Oxygen/chemistry , Ruthenium/chemistry , Adsorption , Diffusion , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...