Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016480

ABSTRACT

The theory of "brain-heart-kidney-semen chamber" axis is proposed based on the basic theories of traditional Chinese medicine, the modern physiological characteristics of men's diseases, and clinical practice. According to this theory, dysfunctions of the brain, heart, kidney, and semen chamber are the core mechanisms for the occurrence of premature ejaculation, and the loss of control of the opening and closing of the seminal orifices due to the dysfunction of the semen chamber is the final link in the occurrence of premature ejaculation. The treatment of premature ejaculation based on the theory of "brain-heart-kidney-essence chamber" axis highlights the overall regulation of the Zang-fu organs involved in the disease, while focusing on the simultaneous treatment of the mind and body. By exploring the biological basis of the "brain-heart-kidney-essence chamber" axis and premature ejaculation, we propose that the biological basis of premature ejaculation and the axis is mainly related to the function decline of the local brain area, neuromodulation malfunction, central neurotransmitter imbalance, endocrine disorders, and enhanced sensory afferents of the penis. This study aims at providing a new approach for the prevention and treatment of premature ejaculation by traditional Chinese medicine and a scientific basis for the development of more effective therapeutic methods.

2.
Sci Rep ; 12(1): 14267, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35995999

ABSTRACT

To further improve the quality of parts in metal 3D printers, it is necessary to optimize the structure and study the performance of their gas circulation filtration systems. First, we used the parametric modeling method to complete the formed cavity modeling. We then optimized the design of the air inlet structure of the formed cavity using the moldflow simulation method, and finally, we evaluated the optimized design results through assembly experiments and measurements of the molded parts' components. The combination of parametric modeling and moldflow simulation methods produced a high modeling efficiency and had a good effect on the optimized design of the gas circulation filtration systems. After optimizing the design, the turbulence intensities and distribution areas of the formed cavities were reduced. During the 3D printing of the curved guide plate, the plane of the guide plate holder was inclined 55° relative to the machining datum plane, which improved the form quality. The 3D printed curved guide plate closely matched the inlet end of the printer's air duct, and the upper guide plate was fixed at a suitable position using screws. The niobium contents of the parts formed by the guide plate in Design 2 were low, which lays a foundation for the 3D printing of high-performance metal parts.

3.
J Mech Behav Biomed Mater ; 117: 104415, 2021 05.
Article in English | MEDLINE | ID: mdl-33652236

ABSTRACT

To obtain high performance (matching, mechanical properties, and biocompatibility) of personalized biomechanical fixation-type tibial implants, three-dimensional reconstruction was performed using a combination of reverse and positive methods. The implant design was optimized using a topological optimization method, the shape-optimized B-unit structure was filled, and the performance was evaluated for implants prepared by direct forming technology of Selective Laser Melting (3D Printing). The results show obviously reduced weight of the tibial implant, increased stress and displacement, yet with a more uniform distribution. The mechanical properties of the tibial implant were lower than those of the B-units, the weight was lighter, and the stress distribution was more uniform. The surface of the tibial implants prepared by SLM appeared clean and bright, the metal texture was good, the structure between the porous struts was clear, the surface had low powder adhesion, the lap joint was good, and no obvious warping deformation or forming defects were observed. The results of this study provide a foundation for the direct application of high performance personalized biofixation implants.


Subject(s)
Prostheses and Implants , Titanium , Porosity , Printing, Three-Dimensional , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...