Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(10): 105707, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33227723

ABSTRACT

The aim of this report is to synthesize copper oxide nanocubes (CuO NCs) at room temperature, using sodium borohydride as a reducing agent, and Cetyl Trimethyl Ammonium Bromide (CTAB) as a stabilizing agent. The crystallinity and morphology of the synthesized CuO NCs are investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The optical properties were analyzed by means of UV-visible absorbance and Raman spectroscopy. The existence of specific functional groups and structural stability were established via FTIR spectroscopy and thermogravimetric analysis (TGA). Furthermore, the catalytic efficiency of the as-prepared CuO NCs was tested using catalytic and photocatalytic studies of para-nitrophenol (p-NP) reduction and methylene blue (MB) degradation, respectively. The catalytic results demonstrated the nanocubes' excellent catalytic and photocatalytic responses with respect to the abatement of p-NP and MB within 50 s and 240 min, with kinetic rate constants of 3.9 × 10-2 s-1 and 6.47 × 10-3 min-1, respectively.

2.
Environ Toxicol Pharmacol ; 51: 23-29, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28262509

ABSTRACT

A simple, green approach for the size controllable preparation of silver nanoparticles (SNPs) using tyrosine as reducing and capping agent is shown here. The size of SNPs is controlled by varying the pH of tyrosine solution. The as synthesized SNPs are characterized by using XRD, UV-Visible, DLS, TEM and SAED. Zeta potential measurements revealed the stability of tyrosine capped silver nanocolloids. Furthermore, catalytic activity studies concluded that the smaller SNPs acts as good catalyst and the catalytic activity depends on size of the nanoparticles. Further, the in-vitro cytotoxicity experiments concluded that the cytotoxicity of the prepared SNPs towards mouse fibroblast (3T3) cell lines is size and dose dependent. Additionally, the present approach is substitute to the traditional methods that are being used now-a-days for size controlled synthesis of SNPs.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Tyrosine/chemistry , 3T3 Cells , Animals , Catalysis , Cell Survival/drug effects , Dose-Response Relationship, Drug , Green Chemistry Technology , Hydrogen-Ion Concentration , Mice , Particle Size , Surface Properties
3.
Environ Toxicol Pharmacol ; 49: 131-136, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27992806

ABSTRACT

A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis.


Subject(s)
Amylases/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , 3T3 Cells , Animals , Cell Survival/drug effects , Green Chemistry Technology , Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Mice , Microscopy, Electron, Transmission , Particle Size , Silver/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...