Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-500185

ABSTRACT

After more than two years the COVID-19 pandemic continues to burden healthcare systems and economies worldwide, and it is evident that long-term effects of the disease can persist for months post-recovery in some individuals. The activity of myeloid cells such as monocytes and dendritic cells (DC) is essential for correct mobilization of the innate and adaptive responses to a pathogen. Impaired levels and responses of monocytes and DC to SARS-CoV-2 is likely to be a driving force behind the immune dysregulation that characterizes severe COVID-19. Here, we followed, for 6-7 months, a cohort of COVID-19 patients hospitalized during the early waves of the pandemic. The levels and phenotypes of circulating monocyte and DC subsets were assessed to determine both the early and long-term effects of the SARS-CoV-2 infection. We found increased monocyte levels that persisted for 6-7 months, mostly attributed to elevated levels of classical monocytes. While most DC subsets recovered from an initial decrease, we found elevated levels of cDC2/cDC3 at the 6-7 month timepoint. Analysis of functional markers on monocytes and DC revealed sustained reduction in PD-L1 expression but increased CD86 expression across almost all cell types examined. Finally, viral load and CRP correlated to the appearance of circulating antibodies and levels of circulating DC and monocyte subsets, respectively. By elucidating some of the long-term effects that SARS-CoV-2 infection has on these key innate myeloid cells, we have shed more light on how the immune landscape remains affected in the months following severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...