Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(7): 3553-3574, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30938524

ABSTRACT

Phosphate and amino acid prodrugs of the HIV-1 protease inhibitor (PI) atazanavir (1) were prepared and evaluated to address solubility and absorption limitations. While the phosphate prodrug failed to release 1 in rats, the introduction of a methylene spacer facilitated prodrug activation, but parent exposure was lower than that following direct administration of 1. Val amino acid and Val-Val dipeptides imparted low plasma exposure of the parent, although the exposure of the prodrugs was high, reflecting good absorption. Screening of additional amino acids resulted in the identification of an l-Phe ester that offered an improved exposure of 1 and reduced levels of the circulating prodrug. Further molecular editing focusing on the linker design culminated in the discovery of the self-immolative l-Phe-Sar dipeptide derivative 74 that gave four-fold improved AUC and eight-fold higher Ctrough values of 1 compared with oral administration of the drug itself, demonstrating a successful prodrug approach to the oral delivery of 1.


Subject(s)
Amino Acids/chemistry , Atazanavir Sulfate/chemistry , Atazanavir Sulfate/pharmacokinetics , Drug Design , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Phosphates/chemistry , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Atazanavir Sulfate/administration & dosage , Atazanavir Sulfate/chemical synthesis , Biological Availability , Esters , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/chemical synthesis , Humans , Prodrugs/administration & dosage , Prodrugs/chemical synthesis
2.
J Med Chem ; 61(9): 4176-4188, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29693401

ABSTRACT

HIV-1 protease inhibitors (PIs), which include atazanavir (ATV, 1), remain important medicines to treat HIV-1 infection. However, they are characterized by poor oral bioavailability and a need for boosting with a pharmacokinetic enhancer, which results in additional drug-drug interactions that are sometimes difficult to manage. We investigated a chemo-activated, acyl migration-based prodrug design approach to improve the pharmacokinetic profile of 1 but failed to obtain improved oral bioavailability over dosing the parent drug in rats. This strategy was refined by conjugating the amine with a promoiety designed to undergo bio-activation, as a means of modulating the subsequent chemo-activation. This culminated in a lead prodrug that (1) yielded substantially better oral drug delivery of 1 when compared to the parent itself, the simple acyl migration-based prodrug, and the corresponding simple l-Val prodrug, (2) acted as a depot which resulted in a sustained release of the parent drug in vivo, and (3) offered the benefit of mitigating the pH-dependent absorption associated with 1, thereby potentially reducing the risk of decreased bioavailability with concurrent use of stomach-acid-reducing drugs.


Subject(s)
Atazanavir Sulfate/metabolism , Atazanavir Sulfate/pharmacology , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Prodrugs/metabolism , Administration, Oral , Animals , Atazanavir Sulfate/administration & dosage , Atazanavir Sulfate/pharmacokinetics , Biological Availability , Fatty Acid Transport Proteins/metabolism , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Symporters/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...