Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Rev (Orlando) ; 37(4): 100792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709652

ABSTRACT

INTRODUCTION: Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS: Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS: From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS: This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.


Subject(s)
Hematopoietic Stem Cell Transplantation , Kidney Transplantation , Adult , Humans , Kidney Transplantation/adverse effects , Living Donors , Immune Tolerance , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous , Transplantation Tolerance
2.
Anal Cell Pathol (Amst) ; 2021: 6634429, 2021.
Article in English | MEDLINE | ID: mdl-33680716

ABSTRACT

Globally, acute kidney injury (AKI) is associated with significant mortality and an enormous economic burden. Whereas iron is essential for metabolically active renal cells, it has the potential to cause renal cytotoxicity by promoting Fenton chemistry-based oxidative stress involving lipid peroxidation. In addition, 1,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, is reported to have an antioxidative role. In this study, we intended to demonstrate the impact of vitamin D on iron-mediated oxidant stress and cytotoxicity of Vero cells exposed to iohexol, a low osmolar iodine-containing contrast media in vitro. Cultured Vero cells were pretreated with 1,25-dihydroxyvitamin D3 dissolved in absolute ethanol (0.05%, 2.0 mM) at a dose of 1 mM for 6 hours. Subsequently, iohexol was added at a concentration of 100 mg iodine per mL and incubated for 3 hours. Total cellular iron content was analysed by a flame atomic absorption spectrophotometer at 372 nm. Lipid peroxidation was determined by TBARS (thiobarbituric acid reactive species) assay. Antioxidants including total thiol content were assessed by Ellman's method, catalase by colorimetric method, and superoxide dismutase (SOD) by nitroblue tetrazolium assay. The cells were stained with DAPI (4',6-diamidino-2-phenylindole), and the cytotoxicity was evaluated by viability assay (MTT assay). The results indicated that iohexol exposure caused a significant increase of the total iron content in Vero cells. A concomitant increase of lipid peroxidation and decrease of total thiol protein levels, catalase, and superoxide dismutase activity were observed along with decreased cell viability in comparison with the controls. Furthermore, these changes were significantly reversed when the cells were pretreated with vitamin D prior to incubation with iohexol. Our findings of this in vitro model of iohexol-induced renotoxicity lend further support to the nephrotoxic potential of iron and underpin the possible clinical utility of vitamin D for the treatment and prevention of AKI.


Subject(s)
Antioxidants/pharmacology , Calcitriol/pharmacology , Iohexol/toxicity , Kidney/drug effects , Lipid Peroxidation/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Chlorocebus aethiops , Oxidative Stress/drug effects , Vero Cells
3.
Exp Biol Med (Maywood) ; 245(16): 1474-1489, 2020 10.
Article in English | MEDLINE | ID: mdl-32741217

ABSTRACT

IMPACT STATEMENT: This work provides in-depth insights on catalytic iron-induced cytotoxicity and the resultant triggering of endogenous vitamin D synthesis in experimental acute kidney injury. Our results reveal significantly elevated levels of catalytic iron culminating in oxidant-mediated renal injury and a concomitant increase in 1,25-dihdyroxyvitamin D3 levels. Also, changes in other iron-related proteins including transferrin, ferritin, and hepcidin were observed both in the serum as well as in their mRNA expression. We consider all these findings vital since no connection between catalytic iron and vitamin D has been established so far. Furthermore, we believe that this work provides new and interesting results, with catalytic iron emerging as an important target in ameliorating renal cellular injury, possibly by timely administration of vitamin D. It also needs to be seen if these observations made in rats could be translated to humans by means of robust clinical trials.


Subject(s)
Acute Kidney Injury/pathology , Iron/toxicity , Vitamin D/pharmacology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Biomarkers/metabolism , Catalysis , Gene Expression Regulation/drug effects , Iron/blood , Kidney/drug effects , Kidney/injuries , Kidney/pathology , Kidney/ultrastructure , Linear Models , Lipocalin-2/metabolism , Male , Multivariate Analysis , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...