Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637418

ABSTRACT

Scirpophaga incertulas Walker (Lepidoptera: Crambidae, yellow stem borer, YSB) is a monophagous insect pest that causes significant yield loss in rice (Oryza staiva L.). Semiochemical based pest management is being sought as an alternate to chemical pesticides to reduce pesticide footprints. We hypothesized differential release of volatiles from host rice and two companion non-host weeds, Echinochloa colona and Echinochloa crus-galli could be responsible for oviposition and biology of YSB and these chemicals could be used for YSB management. Number of eggs laid, and number of larvae hatched were significantly higher in rice plant as compared to weeds. YSB could only form dead hearts in rice plants. YSB significantly preferred host-plant volatiles compared to the non-host plants both in choice and no-choice tests in an Y-tube olfactometer. 2-Hexenal, hexanal, 2,4-hexadienal, benzaldehyde, nonanal, methyl salicylate and decanal were found in the leaf volatolomes of both the host and non-host plants in HS-SPME-GC-MS (Headspace-Solid phase micro extraction-Gas chromatography-Mass spectrometer). Pentene-3-one, 2-pentyl furan, 2,4-heptadienal, 2-octenal, 2-octenol and menthol were present only in the non-host plants. Fourteen rice unique compounds were also detected. The built-in PCA (Principal Component Analysis) and PLS-DA (Partial least squares-discriminant analysis) analysis in the MS-DIAL tool showed that the volatiles emitted from TN1 formed a cluster distinct from Echinochloa spp. and 2-octenal was identified as a unique compound. Olfactometer bioassays using synthetic compounds showed that rice unique compounds, like xylene, hexanal served as attractants whereas non-host unique compounds, like 2-pentylfuran, 2-octenal acted as repellent. The results indicate that the rice unique compounds xylene, hexanal along with other volatile compounds could be responsible for higher preference of YSB towards rice plants. Similarly, the non-host unique compounds 2-pentylfuran, 2-octenal could possibly be responsible for lower preference and defence against YSB. These compounds could be utilised for devising traps for YSB monitoring and management.

2.
Environ Sci Pollut Res Int ; 29(20): 30206-30216, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997925

ABSTRACT

Triflumezopyrim (TMP), a mesoionic insecticide, is commonly used for controlling planthoppers in rice. However, the relationship between the TMP residue and toxicity against brown planthoppers (BPHs) has not been studied in detail. We are reporting the dissipation of TMP from rice plant and soil under field conditions. The median lethal dose and median lethal concentration were 0.036 ng per insect and 0.525 mg L-1, respectively. TMP at recommended dose (25 g a.i. ha-1) recorded 1.25 live BPH per hill as against 25.5 per hill in control at 14 days after treatment. TMP was considered to be harmless to the natural enemies, namely, Cyrtorhinus lividipennis and Lycosa pseudoannulata in the rice ecosystem. The residue of TMP from rice plant and soil was estimated using the QuEChERS method using three different doses (12.5, 25, and 50 g a.i. ha-1). The limit of quantitation (LOQ) of TMP in plant and soil was 5 µg kg-1 and 1 µg kg-1, respectively. The maximum content of TMP in soil was less than 1% that of plant content on day 1. The dissipation pattern of TMP both from plant and soil was better explained by the first-order double-exponential decay model (FODED) as compared to the first-order kinetic model. Overall, the half-lives of TMP were ranged from 2.21 to 3.02 days in plant tissues and 3.78 to 4.79 days in soil as per the FODED model. Based on the persistence and toxicity of TMP, we could conclude that TMP will be effective against BPH up to 7-10 days after application. Triflumezopyrim with reasonable persistence and high efficacy could be recommended as an alternate pesticide in BPH management in rice.


Subject(s)
Hemiptera , Heteroptera , Oryza , Animals , Ecosystem , Oryza/chemistry , Pyridines , Pyrimidinones , Soil
3.
Chemosphere ; 199: 35-43, 2018 May.
Article in English | MEDLINE | ID: mdl-29428514

ABSTRACT

Toxicological screening of Swietenia mahagoni Jacq. (Meliaceae, West Indies Mahogany) against the lepidopteran pest Spodoptera litura was examined. Phytochemical screening through GC-MS analysis revealed nine peaks with prominent peak area % in Bis (2-ethylhexyl) phthalate (31.5%) was observed. The larvae exposed to discriminating dosage of 100 ppm deliver significant mortality rate compare to other treatment concentrations. The lethal concentrations (LC50 and LC90) was observed at the dosage of 31.04 and 86.82 ppm respectively. Sub-lethal concentrations (30 ppm) showed higher larval and pupal durations. However, pupal weight and mean fecundity rate reduced significantly. Similarly, the adult longevity reduced significantly in dose dependent manner. Midgut histology studies showed that the methanolic extracts significantly disturbs the gut epithelial layer, lumen and brush border membrane compare to the control. The soil assay on a non-target beneficial organism, the soil indicator earthworm Eudrilus eugeniae, with extracts from S. mahagoni (200 mg/kg) showed no toxicity compared to Monocrotophos at the dosage of 10 ppm/kg. Current results suggest that this bio-rational plant product from S. mahagoni displays a significant effect to reduce lepidopteran pests with low toxicity to other beneficial species.


Subject(s)
Meliaceae/toxicity , Oligochaeta/drug effects , Spodoptera/drug effects , Animals , Gas Chromatography-Mass Spectrometry , Insecticides/pharmacology , Larva/drug effects , Phytochemicals/analysis , Plant Extracts/toxicity , Pupa/drug effects , West Indies
4.
Ecotoxicol Environ Saf ; 154: 92-99, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29454991

ABSTRACT

Toxicity and repellency activity of Cleistanthus collinus (Roxb.) (CC) leaf extracts were evaluated against rice weevil, Sitophilus oryzae (L.) and red flour beetle, Tribolium castaneum (Herbst) under laboratory condition. Five concentration(s) (1%, 1.5%, 2%, 2.5% and 4%) with two controls (acetone and water) treatments along with deltamethrin were used for direct and contact residual toxicity. The insect that survived after CC exposure were transferred to an untreated feeding substrate and the population buildup of subsequent two generation were recorded after 30 (F1) and 60 days (F2). In the contact residual toxicity, highest CC concentration (4%) produced 75% mortality in S. oryzae and 62.5% mortality in T. castaneum during 7 days of exposure, whereas in direct toxicity the mortality were 81% and 58% respectively, for S. oryzae and T. castaneum. The long term effect of CC was apparent in both the insect species, where F2 populations were significantly decreased in the CC treatments. CC treatment at 4% produced similar adult mortality in comparison to deltamethrin at 1%. In addition, repellent activity of CC extracts was observed against both S. oryzae and T. castaneum. This is the first step towards assessing the scientific basis for the understanding the effectiveness of CC extracts against stored grain pests and it could be a viable eco-friendly option for stored grain insect pest management.


Subject(s)
Insecticides/pharmacology , Oryza/parasitology , Pest Control/methods , Plant Extracts/pharmacology , Tribolium/drug effects , Weevils/drug effects , Animals , Edible Grain/parasitology , Food Parasitology , Oryza/growth & development , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...