Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2041-2057, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38173420

ABSTRACT

Cancer is the second leading cause of death attributed to disease worldwide. Current standard detection methods often rely on a single cancer marker, which can lead to inaccurate results, including false negatives, and an inability to detect multiple cancers simultaneously. Here, we developed a multiplex method that can effectively detect and classify surface proteins associated with three distinct types of breast cancer by utilizing gap-enhanced Raman scattering nanotags and machine learning algorithm. We synthesized anisotropic magnetic core-gold shell gap-enhanced Raman nanotags incorporating three different Raman reporters. These multicolor Raman nanotags were employed to distinguish specific surface protein markers in breast cancer cells. The acquired signals were deconvoluted and analyzed using classical least-squares regression to generate a surface protein profile and characterize the breast cancer cells. Furthermore, computational data obtained via finite-difference time-domain and discrete dipole approximation showed the amplification of the electric fields within the gap region due to plasmonic coupling between the two gold layers. Finally, a random forest classifier achieved an impressive classification and profiling accuracy of 93.9%, enabling effective distinguishing between the three different types of breast cancer cell lines in a mixed solution. With the combination of immunomagnetic multiplex target specificity and separation, gap-enhancement Raman nanotags, and machine learning, our method provides an accurate and integrated platform to profile and classify different cancer cells, giving implications for identification of the origin of circulating tumor cells in the blood system.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Humans , Female , Spectrum Analysis, Raman/methods , Breast Neoplasms/diagnosis , Gold , Algorithms , Membrane Proteins , Magnetic Phenomena
2.
ACS Appl Mater Interfaces ; 15(2): 2679-2692, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598405

ABSTRACT

Single vesicle molecular profiling has the potential to transform cancer detection and monitoring by precisely probing cancer-associated extracellular vesicles (EVs) in the presence of normal EVs in body fluids, but it is challenging due to the small EV size, low abundance of antigens on individual vesicles, and a complex biological matrix. Here, we report a facile dual imaging single vesicle technology (DISVT) for surface protein profiling of individual EVs and quantification of target-specific EV subtypes based on direct molecular capture of EVs from diluted biofluids, dual EV-protein fluorescence-light scattering imaging, and fast image analysis using Bash scripts, Python, and ImageJ. Plasmonic gold nanoparticles (AuNPs) were used to label and detect targeted surface protein markers on individual EVs with dark-field light scattering imaging at the single particle level. Monte Carlo calculations estimated that the AuNPs could detect EVs down to 40 nm in diameter. Using the DISVT, we profiled surface protein markers of interest across individual EVs derived from several breast cancer cell lines, which reflected the parental cells. Studies with plasma EVs from healthy donors and breast cancer patients revealed that the DISVT, but not the traditional bulk enzyme-linked immunosorbent assay, detected human epidermal growth factor receptor 2 (HER2)-positive breast cancer at an early stage. The DISVT also precisely differentiated HER2-positive breast cancer from HER2-negative breast cancer. We additionally showed that the amount of tumor-associated EVs was tripled in locally advanced patients compared to that in early-stage patients. These studies suggest that single EV surface protein profiling with DISVT can provide a facile and high-sensitivity method for early cancer detection and quantitative monitoring.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Metal Nanoparticles , Female , Humans , Antigens , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , Gold/metabolism , Early Detection of Cancer/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...