Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 16(5): 467-75, 2005 May.
Article in English | MEDLINE | ID: mdl-15875258

ABSTRACT

This paper describes an investigation into the influence of microporosity on early osseointegration and final bone volume within porous hydroxyapatite (HA) bone graft substitutes (BGS). Four paired grades of BGS were studied, two (HA70-1 and HA70-2) with a nominal total porosity of 70% and two (HA80-1 and HA80-2) with a total-porosity of 80%. Within each of the total-porosity paired grades the nominal volume fraction of microporosity within the HA struts was varied such that the strut porosity of HA70-1 and HA80-1 was 10% while the strut-porosity of HA70-2 and HA80-2 was 20%. Cylindrical specimens, 4.5 mm diameter x 6.5 mm length, were implanted in the femoral condyle of 6 month New Zealand White rabbits and retrieved for histological, histomorphometric, and mechanical analysis at 1, 3, 12 and 24 weeks. Histological observations demonstrated variation in the degree of capillary penetration at 1 week and bone morphology within scaffolds 3-24 weeks. Moreover, histomorphometry demonstrated a significant increase in bone volume within 20% strut-porosity scaffolds at 3 weeks and that the mineral apposition rate within these scaffolds over the 1-2 week period was significantly higher. However, an elevated level of bone volume was only maintained at 24 weeks in HA80-2 and there was no significant difference in bone volume at either 12 or 24 weeks for 70% total-porosity scaffolds. The results of mechanical testing suggested that this disparity in behaviour between 70 and 80% total-porosity scaffolds may have reflected variations in scaffold mechanics and the degree of reinforcement conferred to the bone-BGS composite once fully integrated. Together these results indicate that manipulation of the levels of microporosity within a BGS can be used to accelerate osseointegration and elevate the equilibrium volume of bone.


Subject(s)
Bone Substitutes/chemistry , Durapatite/chemistry , Femur/cytology , Femur/physiology , Osseointegration/physiology , Animals , Bone Regeneration/physiology , Bone Substitutes/analysis , Compressive Strength , Durapatite/analysis , Femur/surgery , Materials Testing , Porosity , Rabbits , Surface Properties
2.
J Microsc ; 216(Pt 2): 97-109, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15516221

ABSTRACT

Hydroxyapatite has been shown to be biocompatible and bioactive. Incorporation of porosity has been shown to enhance osteointegration; however, difficulty in controlling the extent and type of porosity has limited investigation into determining the role of both macro- and microporosity. The current investigation reports on the synthesis of four types of phase-pure hydroxyapatite with varying levels of porosity (HA1-HA4), and with defined levels of macro- and microporosities. Transmission electron microscopy was used to evaluate qualitatively the effect of these two parameters on cell-material interactions following a 30-day incubation period. Biological mineralization was observed within vesicles and the needle-like minerals were confirmed as hydroxyapatite using X-ray microanalysis. This demonstrated the suitability of primary human osteoblast-like cells as a tool to assess the extent of mineralization. Furthermore, internalization of hydroxyapatite particles was observed. Our findings show that the variation in macro- and microporosity does not affect the extent of cell-material interaction, with collagen synthesis evident in all samples.


Subject(s)
Durapatite/chemistry , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Porosity , Cell Communication/physiology , Cells, Cultured , Electron Probe Microanalysis , Humans , Microscopy, Electron, Transmission
3.
J Microsc ; 215(Pt 1): 100-10, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15230881

ABSTRACT

The biocompatibility of hydroxyapatite has been demonstrated by previous studies, with enhancement of osteointegration through the use of porous hydroxyapatite (pHA). Emphasis has been focused on the use of coralline hydroxyapatite or the introduction of macroporosity into synthetic hydroxyapatite. The current study investigates the role of macro- and microporosities in synthetic phase-pure porous hydroxyapatite on the morphological aspects of human osteoblast-like cells using scanning electron microscopy. Cells were seeded on four different types of porous hydroxyapatite (HA1, HA2, HA3 and HA4) and examined following 1, 2, 14 and 30 days of incubation in vitro. The results indicated that the cells had an affinity to micropores through filopodia extensions, at initial stage of attachment. Cellular proliferation and colonization was evident on all materials with cells forming cellular bridges across the macropores at day 14 with cellular canopy formation covering entire macropores observed by day 30. This study demonstrates that while the introduction of microporosity has no evident effect on cellular morphology at later time points, it seems to play a role in initial cellular anchorage and attachment.


Subject(s)
Bone and Bones/ultrastructure , Durapatite/chemistry , Osteoblasts/ultrastructure , Cell Culture Techniques , Cells, Cultured , Humans , Microscopy, Electron, Scanning/methods , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...