Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269010

ABSTRACT

BackgroundViral load (VL) is one determinant of secondary transmission of SARS-CoV-2. Emergence of variants of concerns (VOC) Alpha and Delta was ascribed, at least partly, to higher VL. Furthermore, with parts of the population vaccinated, knowledge on VL in vaccine-breakthrough infections is crucial. As RNA VL is only a weak proxy for infectiousness, studies on infectious virus presence by cell culture isolation are of importance. MethodsWe assessed nasopharyngeal swabs of COVID-19 patients for quantitative infectious viral titres (IVT) by focus-forming assay and compared to overall virus isolation success and RNA genome copies. We assessed IVTs during the first 5 symptomatic days in a total of 384 patients: unvaccinated individuals infected with pre-VOC SARS-CoV-2 (n= 118) or Delta (n= 127) and vaccine breakthrough infections with Delta (n= 121) or Omicron (n=18). FindingsCorrelation between RNA copy number and IVT was low for all groups. No correlation between IVTs and age or sex was seen. We observed higher RNA genome copies in pre-VOC SARS-CoV-2 compared to Delta, but significantly higher IVTs in Delta infected individuals. Vaccinated Delta infected individuals had significantly lower RNA genome copies and IVTs compared to unvaccinated subjects and cleared virus faster. In addition, vaccinated individuals with Omicron infection had comparable IVTs to Delta breakthrough infections. InterpretationQuantitative IVTs can give detailed insights into virus shedding kinetics. Vaccination was associated with lower infectious titres and faster clearance for Delta, showing that vaccination would also lower transmission risk. Omicron vaccine-breakthrough infections did not show elevated IVTs compared to Delta, suggesting that other mechanisms than increase VL contribute to the high infectiousness of Omicron. FundingThis work was supported by the Swiss National Science Foundation 196644, 196383, NRP (National Research Program) 78 Covid-19 Grant 198412, the Fondation Ancrage Bienfaisance du Groupe Pictet and the Fondation Privee des Hopitaux Universitaires de Geneve.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22268729

ABSTRACT

BackgroundThere is ongoing uncertainty regarding transmission chains and the respective roles of healthcare workers (HCWs) and elderly patients in nosocomial outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in geriatric settings. MethodsWe performed a retrospective cohort study including patients with nosocomial coronavirus disease 2019 (COVID-19) in four outbreak-affected wards, and all SARS-CoV-2 RT-PCR positive HCWs from a Swiss university-affiliated geriatric acute-care hospital that admitted both Covid-19 and non-Covid-19 patients during the first pandemic wave in Spring 2020. We combined epidemiological and genetic sequencing data using a Bayesian modelling framework, and reconstructed transmission dynamics of SARS-CoV-2 involving patients and HCWs, in order to determine who infected whom. We evaluated general transmission patterns according to type of case (HCWs working in dedicated Covid-19 cohorting wards: HCWcovid; HCWs working in non-Covid-19 wards where outbreaks occurred: HCWoutbreak; patients with nosocomial Covid-19: patientnoso) by deriving the proportion of infections attributed to each type of case across all posterior trees and comparing them to random expectations. ResultsDuring the study period (March 1 to May 7, 2020) we included 180 SARS-CoV-2 positive cases: 127 HCWs (91 HCWcovid, 36 HCWoutbreak) and 53 patients. The attack rates ranged from 10-19% for patients, and 21% for HCWs. We estimated that there were 16 importation events (3 patients, 13 HCWs) that jointly led to 16 secondary cases. Most patient-to-patient transmission events involved patients having shared a ward (97.6%, 95% credible interval [CrI] 90.4-100%), in contrast to those having shared a room (44.4%, 95%CrI 27.8-62.5%). Transmission events tended to cluster by type of case: patientnoso were almost twice as likely to be infected by other patientnoso than expected (observed:expected ratio 1.91, 95%CrI 1.08 - 4.00, p = 0.02); similarly, HCWoutbreak were more than twice as likely to be infected by other HCWoutbreak than expected (2.25, 95%CrI 1.00-8.00, p = 0.04). The proportion of infectors of HCWcovid were as expected as random. The proportions of high transmitters ([≥]2 secondary cases) were significantly higher among HCWoutbreak than patientnoso in the late phases (26.2% vs. 13.4%, p<2.2e-16) of the outbreak. ConclusionsMost importation events were linked to HCW. Unexpectedly, transmission between HCWcovid was more limited than transmission between patients and HCWoutbreak. This highlights gaps in infection control and suggests possible areas of improvements to limit the extent of nosocomial transmission.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21263153

ABSTRACT

BackgroundWhen comparing the periods of time during and after the first wave of the ongoing SARS-CoV-2/COVID-19 pandemic in Europe, the associated COVID-19 mortality seems to have decreased substantially. Various factors could explain this trend, including changes in demographic characteristics of infected persons, and the improvement of case management. To date, no study has been performed to investigate the evolution of COVID-19 in-hospital mortality in Switzerland, while also accounting for risk factors. MethodsWe investigated the trends in COVID-19 related mortality (in-hospital and in-intermediate/intensive-care) over time in Switzerland, from February 2020 to May 2021, comparing in particular the first and the second wave. We used data from the COVID-19 Hospital-based Surveillance (CH-SUR) database. We performed survival analyses adjusting for well-known risk factors of COVID-19 mortality (age, sex and comorbidities) and accounting for competing risk. ResultsOur analysis included 16,030 episodes recorded in CH-SUR, with 2,320 reported deaths due to COVID-19 (13.0% of included episodes). We found that overall in-hospital mortality was lower during the second wave of COVID-19 compared to the first wave (HR 0.71, 95% CI 0.69 - 0.72, p-value < 0.001), a decrease apparently not explained by changes in demographic characteristics of patients. In contrast, mortality in intermediate and intensive care significantly increased in the second wave compared to the first wave (HR 1.48, 95% CI 1.42 - 1.55, p-value < 0.001), with significant changes in the course of hospitalisation between the first and the second wave. ConclusionWe found that, in Switzerland, COVID-19 mortality decreased among hospitalised persons, whereas it increased among patients admitted to intermediate or intensive care, when comparing the second wave to the first wave. We put our findings in perspective with changes over time in case management, treatment strategy, hospital burden and non-pharmaceutical interventions. Further analyses of the potential effect of virus variants and of vaccination on mortality would be crucial to have a complete overview of COVID-19 mortality trends throughout the different phases of the pandemic.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20246884

ABSTRACT

BackgroundSARS-CoV-2/COVID-19, which emerged in China in late 2019, rapidly spread across the world causing several million victims in 213 countries. Switzerland was severely hit by the virus, with 43000 confirmed cases as of September 1st, 2020. AimIn cooperation with the Federal Office of Public Health, we set up a surveillance database in February 2020 to monitor hospitalised patients with COVID-19 in addition to their mandatory reporting system. MethodsPatients hospitalised for more than 24 hours with a positive PCR test, from 20 Swiss hospitals, are included. Data collection follows a custom Case Report Form based on WHO recommendations and adapted to local needs. Nosocomial infections were defined as infections for which the onset of symptoms started more than 5 days after the patients admission date. ResultsAs of September 1st, 2020, 3645 patients were included. Most patients were male (2168 - 59.5%),and aged between 50 and 89 years (2778 - 76.2%), with a median age of 68 (IQR 54-79). Community infections dominated with 3249 (89.0%) reports. Comorbidities were frequently reported: hypertension (1481 - 61.7%), cardiovascular diseases (948 - 39.5%), and diabetes (660 - 27.5%) being the most frequent in adults; respiratory diseases and asthma (4 -21.1%), haematological and oncological diseases (3 - 15.8%) being the most frequent in children. Complications occurred in 2679 (73.4%) episodes, mostly for respiratory diseases (2470 - 93.2% in adults, 16 - 55.2% in children), renal (681 - 25.7%) and cardiac (631 - 23.8%) complication for adults. The second and third most frequent complications in children affected the digestive system and the liver (7 - 24.1%). A targeted treatment was given in 1299 (35.6%) episodes, mostly with hydroxychloroquine (989 - 76.1%). Intensive care units stays were reported in 578 (15.8%) episodes. 527 (14.5%) deaths were registered, all among adults. ConclusionThe surveillance system has been successfully initiated and provides a very representative set of data for Switzerland. We therefore consider it to be a valuable addition to the existing mandatory reporting, providing more precise information on the epidemiology, risk factors, and clinical course of these cases.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20233080

ABSTRACT

BackgroundCoronavirus disease 19 (COVID-19) has frequently been colloquially compared to the seasonal influenza, but comparisons based on empirical data are scarce. AimsTo compare in-hospital outcomes for patients admitted with community-acquired COVID-19 to patients with community-acquired influenza in Switzerland. MethodsPatients >18 years, who were admitted with PCR proven COVID-19 or influenza A/B infection to 14 participating Swiss hospitals were included in a prospective surveillance. Primary and secondary outcomes were the in-hospital mortality and intensive care unit (ICU) admission between influenza and COVID-19 patients. We used Cox regression (cause-specific models, and Fine & Gray subdistribution) to account for time-dependency and competing events with inverse probability weighting to account for confounders. ResultsIn 2020, 2843 patients with COVID-19 were included from 14 centers and in years 2018 to 2020, 1361 patients with influenza were recruited in 7 centers. Patients with COVID-19 were predominantly male (n=1722, 61% vs. 666 influenza patients, 48%, p<0.001) and were younger than influenza patients (median 67 years IQR 54-78 vs. median 74 years IQR 61-84, p<0.001). 363 patients (12.8%) died in-hospital with COVID-19 versus 61 (4.4%) patients with influenza (p<0.001). The final, adjusted subdistribution Hazard Ratio for mortality was 3.01 (95% CI 2.22-4.09, p<0.001) for COVID-19 compared to influenza, and 2.44 (95% CI, 2.00-3.00, p<0.001) for ICU admission. ConclusionEven in a national healthcare system with sufficient human and financial resources, community-acquired COVID-19 was associated with worse outcomes compared to community-acquired influenza, as the hazards of in-hospital death and ICU admission were [~]3-fold higher.

SELECTION OF CITATIONS
SEARCH DETAIL
...