Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Neurosci ; 38(8): 3146-58, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23909897

ABSTRACT

The mechanisms that underlie the selection of an inhibitory GABAergic axon's postsynaptic targets and the formation of the first contacts are currently unknown. To determine whether expression of GABAA receptors (GABAA Rs) themselves--the essential functional postsynaptic components of GABAergic synapses--can be sufficient to initiate formation of synaptic contacts, a novel co-culture system was devised. In this system, the presynaptic GABAergic axons originated from embryonic rat basal ganglia medium spiny neurones, whereas their most prevalent postsynaptic targets, i.e., α1/ß2/γ2-GABAA Rs, were expressed constitutively in a stably transfected human embryonic kidney 293 (HEK293) cell line. The first synapse-like contacts in these co-cultures were detected by colocalization of presynaptic and postsynaptic markers within 2 h. The number of contacts reached a plateau at 24 h. These contacts were stable, as assessed by live cell imaging; they were active, as determined by uptake of a fluorescently labelled synaptotagmin vesicle-luminal domain-specific antibody; and they supported spontaneous and action potential-driven postsynaptic GABAergic currents. Ultrastructural analysis confirmed the presence of characteristics typical of active synapses. Synapse formation was not observed with control or N-methyl-d-aspartate receptor-expressing HEK293 cells. A prominent increase in synapse formation and strength was observed when neuroligin-2 was co-expressed with GABAA Rs, suggesting a cooperative relationship between these proteins. Thus, in addition to fulfilling an essential functional role, postsynaptic GABAA Rs can promote the adhesion of inhibitory axons and the development of functional synapses.


Subject(s)
Axons/physiology , Receptors, GABA-A/metabolism , Synapses/physiology , Synaptic Potentials , Action Potentials , Animals , Axons/metabolism , Basal Ganglia/cytology , Basal Ganglia/growth & development , Basal Ganglia/physiology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Growth Processes , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , HEK293 Cells , Humans , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Synapses/metabolism
2.
J Neurochem ; 111(6): 1501-13, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19811606

ABSTRACT

This is a study of the interaction between the two NMDA neurotransmitter receptor subtypes, NR1/NR2A and NR1/NR2B, and amyloid precursor protein (APP) 695, the major APP variant expressed in neurones. APP695 co-immunoprecipitated with assembled NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors following expression in mammalian cells. Single NR1-1a, NR1-2a, NR1-4b(c-Myc), or NR2 subunit transfections revealed that co-association of APP695 with assembled NMDA receptors was mediated via the NR1 subunit; it was independent of the NR1 C1, C2, and C2' cassettes and, the use of an NR1-2a(c-Myc)-trafficking mutant suggested that interaction between the two proteins occurs in the endoplasmic reticulum. The use of antibodies directed against extracellular and intracellular NR2 subunit epitopes for immunoprecipitations suggested that APP/NMDA receptor association was mediated via N-terminal domains. Anti-APP antibodies immunoprecipitated NR1, NR2A, and NR2B immunoreactive bands from detergent extracts of mammalian brain; reciprocally, anti-NR1 or anti-NR2A antibodies co-immunoprecipitated APP immunoreactivity. Immune pellets from brain were sensitive to endoglycosidase H suggesting that, as for heterologous expression, APP and NMDA receptor association occurs in the endoplasmic reticulum. Co-expression of APP695 in mammalian cells resulted in enhanced cell surface expression of both NR1-1a/NR2A and NR1-1a/NR2B NMDA receptors with no increase in total subunit expression. These findings are further evidence for a role of APP in intracellular trafficking mechanisms. Further, they provide a link between two major brain proteins that have both been implicated in Alzheimer's disease.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amyloid beta-Protein Precursor/genetics , Cell Line, Transformed/ultrastructure , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Immunoprecipitation/methods , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/pharmacology , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/pharmacology , Protein Subunits/metabolism , Protein Transport/genetics , Protein Transport/physiology , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...