Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683874

ABSTRACT

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Subject(s)
Cell Respiration , Mitochondria , Receptor, Muscarinic M2 , Mitochondria/metabolism , Humans , Animals , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M2/genetics , Mice , Cell Proliferation , Induced Pluripotent Stem Cells/metabolism , Oxygen Consumption , Reactive Oxygen Species/metabolism , Stress, Physiological , Oxidative Phosphorylation , HEK293 Cells
2.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436094

ABSTRACT

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Male , Animals , Mice , Stroke Volume , Ventricular Function, Left/physiology , Adrenergic Agents , Disease Models, Animal , Nitric Oxide , Mice, Inbred C57BL
3.
Chembiochem ; 25(2): e202300659, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37942961

ABSTRACT

The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Receptors, Dopamine D2/metabolism , Dopamine Antagonists/pharmacology , Ligands , Radioligand Assay , Coloring Agents
4.
Chembiochem ; 25(2): e202300658, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37983731

ABSTRACT

Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.


Subject(s)
Fluorescent Dyes , Receptors, Dopamine D1 , Receptors, Dopamine D1/metabolism , Ligands , Fluorescence
5.
Life (Basel) ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362948

ABSTRACT

The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations' position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.

6.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142320

ABSTRACT

The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the ß1- and ß2-adrenergic receptors (ß1/2-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of ß-ARs in adult CMs.


Subject(s)
Induced Pluripotent Stem Cells , Adult , Cell Differentiation/genetics , Cell Membrane , Cells, Cultured , Humans , Myocytes, Cardiac/metabolism , RNA, Messenger/metabolism , Receptors, Adrenergic, beta/metabolism , Spectrometry, Fluorescence
7.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: mdl-35626696

ABSTRACT

Spatiotemporal signal shaping in G protein-coupled receptor (GPCR) signaling is now a well-established and accepted notion to explain how signaling specificity can be achieved by a superfamily sharing only a handful of downstream second messengers. Dozens of Gs-coupled GPCR signals ultimately converge on the production of cAMP, a ubiquitous second messenger. This idea is almost always framed in terms of local concentrations, the differences in which are maintained by means of spatial separation. However, given the dynamic nature of the reaction-diffusion processes at hand, the dynamics, in particular the local diffusional properties of the receptors and their cognate G proteins, are also important. By combining some first principle considerations, simulated data, and experimental data of the receptors diffusing on the membranes of living cells, we offer a short perspective on the modulatory role of local membrane diffusion in regulating GPCR-mediated cell signaling. Our analysis points to a diffusion-limited regime where the effective production rate of activated G protein scales linearly with the receptor-G protein complex's relative diffusion rate and to an interesting role played by the membrane geometry in modulating the efficiency of coupling.


Subject(s)
Membrane Proteins , Receptors, G-Protein-Coupled , GTP-Binding Proteins/metabolism , Membrane Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Second Messenger Systems , Signal Transduction/physiology
8.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35294858

ABSTRACT

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Cell Physiological Phenomena , Cyclic AMP , Glucagon-Like Peptide 1 , Receptors, Adrenergic, beta-2 , Receptors, G-Protein-Coupled/chemistry , Second Messenger Systems
9.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088840

ABSTRACT

A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two ß-adrenergic receptor (ß-AR) subtypes, ß1 and ß2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for ß1-AR but not for ß2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent ß-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the ß2-AR is confined to and diffuses within the T-tubular network, as opposed to the ß1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the ß2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the ß2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.


Subject(s)
Cell Membrane/metabolism , Induced Pluripotent Stem Cells/metabolism , Molecular Imaging , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Animals , Cell Line , Cell Membrane/genetics , Humans , Mice , Mice, Transgenic , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-2/genetics
11.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800403

ABSTRACT

Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic ß-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.

12.
Nat Protoc ; 16(3): 1419-1451, 2021 03.
Article in English | MEDLINE | ID: mdl-33514946

ABSTRACT

Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.


Subject(s)
Optical Imaging/methods , Receptors, G-Protein-Coupled/metabolism , Single-Cell Analysis/methods , Fluorescence , HEK293 Cells , Humans , Membrane Proteins/metabolism , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Protein Multimerization/physiology , Signal Transduction/physiology , Spectrometry, Fluorescence/methods
13.
Proc Natl Acad Sci U S A ; 117(46): 29144-29154, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33148803

ABSTRACT

Although class A G protein-coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer-dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.


Subject(s)
Dimerization , Microscopy, Fluorescence/methods , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Cell Membrane/metabolism , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Mutation , Protein Conformation , Protein Multimerization , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Receptors, Chemokine
14.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32846156

ABSTRACT

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Single-Cell Analysis/methods , Computer Simulation , Cyclic AMP/chemistry , Cyclic AMP-Dependent Protein Kinases/chemistry , Cytoplasm/metabolism , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Models, Molecular , Phosphoric Diester Hydrolases/chemistry , Protein Binding , Protein Domains , Recombinant Proteins , Spatio-Temporal Analysis , Spectrometry, Fluorescence
15.
Nat Chem Biol ; 16(9): 946-954, 2020 09.
Article in English | MEDLINE | ID: mdl-32541966

ABSTRACT

G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with ß-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals.


Subject(s)
Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Single Molecule Imaging/methods , Animals , CHO Cells , Cricetulus , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/chemistry , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Fluorescence Resonance Energy Transfer , Morphine/chemistry , Morphine/pharmacology , Mutation , Naloxone/chemistry , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/chemistry , Naltrexone/pharmacology , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Phosphorylation , Protein Multimerization , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/genetics , beta-Arrestins/metabolism
16.
Nat Protoc ; 15(6): 2107-2139, 2020 06.
Article in English | MEDLINE | ID: mdl-32451442

ABSTRACT

Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.


Subject(s)
Hydrodynamics , Microscopy, Atomic Force/methods , RNA, Long Noncoding/chemistry , Image Processing, Computer-Assisted
17.
Data Brief ; 29: 105063, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32055652

ABSTRACT

We report here on the measurement of the diffusion coefficient of fluorescent species using a commercial microscope possessing a resonant scanner. Sequential linescans with a rate of up to 12 kHz yield a temporal resolution of 83 µs, making the setup amenable to measure diffusion rates over a range covering at least three orders of magnitude, from 100 µm2/s down to 0.1 µm2/s. We share representative data sets covering (i) the diffusion of a dye molecule, observed in media of different viscosities and (ii) the diffusion of a prototypical membrane receptor. The data can be valuable for researchers interested in the rapid diffusion properties of nuclear, cytosolic or membrane bound proteins fused to fluorescent tags.

18.
Nat Methods ; 17(3): 273-275, 2020 03.
Article in English | MEDLINE | ID: mdl-32042187
19.
Int J Mol Sci ; 21(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059383

ABSTRACT

The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and ß-arrestin2 recruitment, using the two endogenous agonists, α- and ß-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.


Subject(s)
Mutation , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Cyclic AMP/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Leptin/metabolism , Ligands , Melanocortins/metabolism , Models, Theoretical , Obesity/genetics , Phosphorylation , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/metabolism , alpha-MSH/metabolism
20.
Mol Cell ; 75(5): 982-995.e9, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31444106

ABSTRACT

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.


Subject(s)
Genes, Tumor Suppressor , Nucleotide Motifs , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , HCT116 Cells , Humans , RNA Folding , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...