Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 55(36): 10667-71, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27464784

ABSTRACT

Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2)  S cm(-1) and 1.8×10(-2)  S cm(-1) under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic-based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen-bonded porous organic frameworks as solid-state proton conducting materials.

2.
Chem Commun (Camb) ; 52(54): 8459-62, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27312363

ABSTRACT

A chemically stable cationic MOF encapsulating an in situ formed water-hydroxide supramolecular anionic chain is realized for high hydroxide (OH(-)) ion conductivity in the solid-state (Type A). High OH(-) ion conductivity and low activation energy of the MOF demonstrate the advantage of the in situ incorporation of OH(-) ions to achieve efficient OH(-) ion conduction in the solid-state.

3.
ACS Appl Mater Interfaces ; 8(1): 553-62, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26652291

ABSTRACT

Here, we report the preparation of a flexible, free-standing, Pt- and TCO-free counter electrode in dye-sensitized solar cell (DSSC)-derived from polyethylenedioxythiophene (PEDOT)-impregnated cellulose paper. The synthetic strategy of making the thin flexible PEDOT paper is simple and scalable, which can be achieved via in situ polymerization all through a roll coating technique. The very low sheet resistance (4 Ω/□) obtained from a film of 40 µm thick PEDOT paper (PEDOT-p-5) is found to be superior to the conventional fluorine-doped tin oxide (FTO) substrate. The high conductivity (357 S/cm) displayed by PEDOT-p-5 is observed to be stable under ambient conditions as well as flexible and bending conditions. With all of these features in place, we could develop an efficient Pt- and TCO-free flexible counter electrode from PEDOT-p-5 for DSSC applications. The catalytic activity toward the tri-iodide reduction of the flexible electrode is analyzed by adopting various electrochemical methodologies. PEDOT-p-5 is found to display higher exchange current density (7.12 mA/cm(2)) and low charge transfer resistance (4.6 Ω) compared to the benchmark Pt-coated FTO glass (2.40 mA/cm(2) and 9.4 Ω, respectively). Further, a DSSC fabricated using PEDOT-p-5 as the counter electrode displays a comparable efficiency of 6.1% relative to 6.9% delivered by a system based on Pt/FTO as the counter electrode.

4.
ACS Appl Mater Interfaces ; 8(2): 1233-41, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26697922

ABSTRACT

Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 µm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.

5.
Phys Chem Chem Phys ; 17(39): 26101-10, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26377752

ABSTRACT

Thin films consisting of platinum nanoparticles (Pt NPs) with uniform size and distribution have been successfully prepared at a liquid-liquid interface. Apart from the usual substrates like glass, Si etc. the films were also deposited on the surfaces of MoS2 thin films and graphene nanosheets (GNS) respectively, by using a layer-by-layer (LbL) deposition technique to form Pt-MoS2 and Pt-GNS composites. The loading concentration of Pt NPs on MoS2 and GNS can be adjusted by selecting the number and sequence of the component layers during LbL deposition. The Pt thin films, Pt-MoS2 and Pt-GNS nanocomposite thin films are characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). TEM results of the composites show that Pt NPs with sizes in the range of 1 to 3 nm are uniformly dispersed on the MoS2/GNS surface. The catalytic activities of Pt and Pt-composites for the reaction of methanol oxidation are studied using cyclic voltammetry and chronoamperometry. Electrochemical studies reveal that both the Pt-MoS2 and Pt-GNS nanocomposites show excellent electrocatalytic activity towards methanol oxidation. Pt-MoS2 and Pt-GNS nanocomposite electrodes show excellent stability for reuse of the catalyst. A probable mechanism of catalysis has been discussed. We propose that the similar architecture reported here would be promising for the synthesis of high performance catalysts for fuel cells, gas phase reactions, and other applications such as sensors.

6.
Inorg Chem ; 54(11): 5366-71, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25985048

ABSTRACT

A new function of metal-sulfate-based coordination polymer (CP) for proton conduction was investigated through rational integration of a continuous water array and protonated amine in the coordination space of the CP. The H-bonded arrays of water molecules along with nitrogen-rich aromatic cation (protonated melamine) facilitate proton conduction in the compound under humid conditions. Although several reports of metal-oxalate/phosphate-based CPs showing proton conduction are known, this is the first designed synthesis of a metal-sulfate-based CP bearing water arrays functioning as a solid-state proton conductor.

7.
ACS Appl Mater Interfaces ; 7(14): 7661-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25783045

ABSTRACT

Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other highlights of the supercapacitor system derived from this composite material.

8.
Chem Commun (Camb) ; 51(11): 2130-3, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25539401

ABSTRACT

A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.

9.
Small ; 10(21): 4395-402, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25044804

ABSTRACT

Hydrothermal processing followed by controlled pyrolysis of used white office paper (a globally collectable shredded paper waste) are performed to obtain high surface area carbon with hierarchical pore size distribution. The BET specific surface area of such carbon is 2341 m(2) g(-1). The interconnected macroporous structure along with the concurrent presence of mesopores and micropores makes the material ideal for ultracapacitor application. Such waste paper derived carbon (WPC) shows remarkable performance in all solid-state supercapacitor fabricated with ionic liquid-polymer gel electrolyte. At room temperature, the material exhibits a power density of 19,000 W kg(-1) with an energy capability of 31 Wh kg(-1). The Li-ion electrochemical capacitor constructed using WPC as cathode also shows an excellent energy storage capacity of 61 Wh kg(-1).

10.
Nanoscale ; 6(17): 10332-9, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25072706

ABSTRACT

Here, we report a highly conducting 1-dimensionally (1-D) aligned polyethylenedioxythiophene (PEDOT) along the inner and outer surfaces of a hollow carbon nanofiber (CNF) and its application as a counter electrode in a dye sensitized solar cell (DSSC). The hybrid material (CP-25) displays a conversion efficiency of 7.16% compared to 7.30% for the standard Pt counter electrode, 4.48% for bulk PEDOT and 5.56% for CNF. The enhanced conversion efficiency of CP-25 is attributed to the accomplishment of high conductivity and surface area of PEDOT through the 1-D alignment compared to its bulk counterpart. Reduced charge transfer resistance and high conductivity of CP-25 could be proven by cyclic voltammetry, impedance analysis and Tafel experiments. Further, through a long-term stability test involving efficiency profiling for 20 days, it is observed that CP-25 possesses excellent durability compared to the bulk PEDOT.

11.
Chem Commun (Camb) ; 50(54): 7188-90, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-24865591

ABSTRACT

We report the deposition of uniform porous MnO2 nanowalls on a conducting carbon fiber substrate using a simple electrochemical method, which produces ordered nano-channels demarcated by the MnO2 walls for easy ion transport and a continuous electron path created by the carbon backbone. The system achieves a specific capacitance of 1149 F g(-1) and retains 565 F g(-1) even at dragging conditions as high as 100 A g(-1).

12.
Nanoscale ; 6(11): 5944-52, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24764081

ABSTRACT

We report the design of an all-solid-state supercapacitor, which has charge storage characteristics closely matching that of its liquid-state counterpart even under extreme temperature and humidity conditions. The prototype is made by electro-depositing polyethylenedioxythiophene (PEDOT) onto the individual carbon fibers of a porous carbon substrate followed by intercalating the matrix with polyvinyl alcohol-sulphuric acid (PVA-H2SO4) gel electrolyte. The electrodeposited layer of PEDOT maintained a flower-like growth pattern along the threads of each carbon fiber. This morphology and the alignment of PEDOT led to an enhanced surface area and electrical conductivity, and the pores in the system enabled effective intercalation of the polymer-gel electrolyte. Thus, the established electrode-electrolyte interface nearly mimics that of its counterpart based on the liquid electrolyte. Consequently, the solid device attained very low internal resistance (1.1 Ω cm(-2)) and a high specific capacitance (181 F g(-1)) for PEDOT at a discharge current density of 0.5 A g(-1). Even with a high areal capacitance of 836 mF cm(-2) and volumetric capacitance of 28 F cm(-3), the solid device retained a mass-specific capacitance of 111 F g(-1) for PEDOT. This is in close agreement with the value displayed by the corresponding liquid-state system (112 F g(-1)), which was fabricated by replacing the gel electrolyte with 0.5 M H2SO4. The device also showed excellent charge-discharge stability for 12 000 cycles at 5 A g(-1). The performance of the device was consistent even under wide-ranging humidity (30-80%) and temperature (-10 to 80 °C) conditions. Finally, a device fabricated by increasing the electrode area four times was used to light an LED, which validated the scalability of the process.

13.
ACS Appl Mater Interfaces ; 5(24): 13397-404, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24313363

ABSTRACT

Here we report an all-solid-state supercapacitor (ASSP) which closely mimics the electrode-electrolyte interface of its liquid-state counterpart by impregnating polyaniline (PANI)-coated carbon paper with polyvinyl alcohol-H2SO4 (PVA-H2SO4) gel/plasticized polymer electrolyte. The well penetrated PVA-H2SO4 network along the porous carbon matrix essentially enhanced the electrode-electrolyte interface of the resulting device with a very low equivalent series resistance (ESR) of 1 Ω/cm(2) and established an interfacial structure very similar to a liquid electrolyte. The designed interface of the device was confirmed by cross-sectional elemental mapping and scanning electron microscopy (SEM) images. The PANI in the device displayed a specific capacitance of 647 F/g with an areal capacitance of 1 F/cm(2) at 0.5 A/g and a capacitance retention of 62% at 20 A/g. The above values are the highest among those reported for any solid-state-supercapacitor. The whole device, including the electrolyte, shows a capacitance of 12 F/g with a significantly low leakage current of 16 µA(2). Apart from this, the device showed excellent stability for 10000 cycles with a coulombic efficiency of 100%. Energy density of the PANI in the device is 14.3 Wh/kg.

14.
Chempluschem ; 78(10): 1296-1303, 2013 Oct.
Article in English | MEDLINE | ID: mdl-31986783

ABSTRACT

A simple, one-step synthetic route for developing a two-dimensional multifunctional electrocatalyst is reported, by the functionalisation of graphene using oxidised ethylenedioxythiophene (O-EDOT). The mutually assisted redox reaction between graphene oxide (GO) and EDOT facilitates the reduction of GO to graphene with a concomitant deposition of O-EDOT on the surface of the graphene. The oxidised surface of GO catalyses the reaction without using an added reducing agent, so a controlled and uniform deposition of O-EDOT is ensured on the surface of graphene, which essentially prevents the restacking of the layers. UV/Visible, IR, Raman and X-ray photoelectron spectroscopy give valid evidence for the reduction and functionalisation of graphene sheets. The functional groups present on the surface of graphene are found to tune the physical and chemical properties of graphene. Consequently, the functionalised material displays enhanced electrocatalytic activity for the reduction of oxygen to water and I3- to I- relative to pristine graphene. These distinct property characteristics make the material a versatile cathode electrocatalyst for both alkaline anion-exchange membrane fuel cells and dye-sensitised solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...